Farklı Sulama Suyu Kaynaklarıyla Sulama Koşullarında Ahır Gübresi ve Biyoçarla Organik Madde İçeriği Geliştirilmiş Topraktan CO2 Salınımı
DOI:
https://doi.org/10.24925/turjaf.v11i3.522-531.6008Anahtar Kelimeler:
Ahır gübresi- Arıtılmış atık su- Biyoçar- Toprak nemi ve sıcaklığı- Topraktan CO2 ve H2O salınımı-Özet
Bu çalışmada toprak organik madde içeriğini iyileştirmek için toprağa ahır gübresi ve biyoçar uygulanarak farklı organik madde seviyelerinin [%1,21 (kontrol) %1,5, %2,5, %3,5 ve %4,5] elde edildiği inkübe toprağın temiz su ve arıtılmış atık suyla sulanması koşullarında bir aylık ıslanma-kuruma döngüsünde topraktan CO2 ve H2O salınımı ile toprak nemi ve sıcaklığı değerleri araştırılmıştır. Çalışmanın sonuçları kontrol uygulamasına göre ahır gübresiyle toprağın iyileştirilen organik madde içeriğinde CO2 salınımının %29’dan %146’a kadar arttığını gösterirken biyoçarın %1,5 ve 2,5 organik madde seviyelerinin kontrol uygulamasıyla istatistiksel olarak benzer olduğunu ancak biyoçarla daha fazla artan organik madde katkısının kontrol uygulamasına göre salınımı %28 ve %81 arttırdığını belirlemiştir. Arıtılmış atık suyla sulama temiz suya göre %40 daha fazla CO2 salınımıyla sonuçlanmıştır. Ahır gübresi ve biyoçarla toprağın artan organik madde katkısı topraktan daha az H2O salınımı ve daha fazla toprak nemi sağlamış ve ahır gübresinin aksine biyoçarın H2O salınımını azaltıcı ve toprak nemini koruyucu etkisi belirlenmiştir. Toprak neminin daha fazla olması nemin yüksek bulunduğu uygulamalarda toprak sıcaklığını azaltıcı bir etki ortaya çıkarmıştır. Ayrıca topraktan CO2 salınımı toprak nemi ile önemli pozitif doğrusal ilişki göstermiş ancak toprak sıcaklığıyla olan etkisi önemsiz olmuştur. Toprak organik maddesini iyileştirmek için ahır gübresi yerine biyoçarın topraktan CO2 ve H2O salınımlarını azaltıcı ve toprak nemini koruyucu özelliklerinden yararlanılması önemli bir sonuç olmakla beraber özellikle atık suyla sulama koşullarında biyoçarın çevre dostu bir uygulama olarak kullanımı bu çalışmanın sonucunda önerilebilir olarak bulunmuştur.
Referanslar
Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202: 183-191. https://doi.org/10.1016/j.geoderma.2013.03.003
Ahmed R, Li Y, Mao L, Xu C, Lin W, Ahmed S, Ahmed W. 2019. Biochar effects on mineral nitrogen leaching, moisture content, and evapotranspiration after 15N urea fertilization for vegetable crop. Agronomy, 9(6): 331. https://doi.org/10.3390/agronomy9060331
Allen SE, Grimshaw HM, Parkinson JA, Quarmby C. 1974. Chemical analysis of ecological materials. Blackwell Scientific Publications. ISBN 9780632003211.
Altıkat S, Kücükerdem HK, Altıkat A, 2018. Effects of wheel traffic and farmyard manure applications on soil CO2 emission and soil oxygen content. Turkish Journal of Agriculture and Forestry, 42: 288-297. https://doi.org/10.3906/tar-1709-79
APHA-AWWA-WPCF, 1989. Standart methods for examination of water and wastewater. Available from: https://www.techstreet.com/standards/standard-methods-for-the-examination-of-water-and-wastewater-23rdedition?gclid= EAIaIQobChMI8cO8 p8K24AIVFojVCh3qvwxIEAAYASAAEgLc_vD_BwE&sid=goog&product_id=1974889 [Erişim tarihi: 18.10.2022]
Assefa S, Tadesse S. 2019. The principal role of organic fertilizer on soil properties and agricultural productivity-a review. Agricultural Research & Technology Open Access Journal, 22(2): 556192.
Ayyıldız M. 1983. Sulama suyu kalitesi ve tuzluluk problemleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
Bass AM, Bird MI, Kay G, Muirhead B. 2016. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 550: 459-470. https://doi.org/10.1016/j.scitotenv.2016.01.143
Bremner JM, Mulvaney CS.1982. Nitrogen-Total 1. Methods of Soil Analysis, Part 2, Physical and Mineralogical Methods. In: Klute A (editör). Agronomy Society of America and Soil Science Society America.
Cao L, Zhang X, Xu Y, Xiang W, Wang R, Ding F, Hong P, Gao B. 2022. Straw and wood based biochar for CO2 capture: Adsorption performance and governing mechanisms. Separation and Purification Technology, 287: 120592. https://doi.org/10.1016/j.seppur.2022.120592
Corwin DL, Rhoades JD. 1984. Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Science Society of America Journal, 48(2): 288-291. https://doi.org/10.2136/sssaj1984.03615995004800020011x
Dubinsky EA, Silver WL, Firestone MK. 2010. Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology, 91(9): 2604-2612. https://doi.org/10.1890/09-1365.1
Emerson WW, McGarry D. 2003. Organic carbon and soil porosity. Soil Research, 41(1):107-118. https://doi.org/10.1071/SR01064
Fang X, Zhu YL, Liu JD, Lin XP, Sun HZ, Tang XH, Hu YL, Huang YP, Yi ZG. 2022. Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical China. Forests, 13(4): 578. https://doi.org/10.3390/f13040578
FAO, 2007. Food and Agriculture Organization of the United Nations. Coping with water scarcity-Challenge of the twenty-first century, World water day. Available from: http://www.fao.org/3/a-aq444e.pdf [Erişim tarihi: 20.01.2023]
FAO, 2012. Food and Agriculture Organization of the United Nations. Coping with water scarcity-An action framework for agriculture and food security. Available from: http://www.fao.org/3/a-i3015e.pdf [Erişim tarihi: 20.01.2023]
Fernández-Luqueño F, Reyes-Varela V, Cervantes-Santiago F, Gómez-Juárez C, Santillán-Arias A, Dendooven L. 2010. Emissions of carbon dioxide, methane and nitrous oxide from soil receiving urban wastewater for maize (Zea mays L.) cultivation. Plant and Soil, 331(1): 203-215. https://doi.org/10.1007/s11104-009-0246-0
French S, Levy-Booth D, Samarajeewa A, Shannon KE, Smith J, Trevors JT. 2009. Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology, 25: 1887-1900. https://doi.org/10.1007/ s11274-009-0107-2
Gee GW, Bauder JW. 1986. Particle-Size Analysis. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. In: Klute A (editör). Agronomy Society of America and Soil Science Society America.
HACH, 2005. DR 5000 spectrometer procedures manuel. Available from: http://tr.hach.com/quick.Searchdownload search.jsa?keywords=kullan%C4%B1 [Erişim tarihi: 17.10.2018]
HACH, 2010. Hach bodtrak II. Available from: http://tr.hach.com/bod-trak-ii-aksesuarlar-ile-birlikte-respirometrikboi-aparat/productdownloadsd [Erişim tarihi: 17.10.2018]
Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH. 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43(8): 1723-1731. ttps://doi.org/10.1016/j.soilbio.2011.04.018
Jung, S., Park, Y. K., & Kwon, E. E. (2019). Strategic use of biochar for CO2 capture and sequestration. Journal of CO2 Utilization, 32: 128-139. https://doi.org/10.1016/ j.jcou.2019.04.012
Kudal M, Müftüoğlu NM. 2014. Kentsel atık su ile sulanan topraklarda bazı verimlilik özelliklerinin incelenmesi. Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 2(1): 77-81.
Lahlou FZ, Mackey HR, Al-Ansari T. 2022. Role of wastewater in achieving carbon and water neutral agricultural production. Journal of Cleaner Production, 130706. https://doi.org/ 10.1016/j.jclepro.2022.130706
Laird DA. 2008. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1): 178-181. https://doi.org/ 10.2134/agronj2007.0161
Lamparter A, Bachmann J, Goebel MO, Woche SK. 2009. Carbon mineralization soil: impact of wetting-drying, aggregation and water repellency. Geoderma, 150: 324-333. https://doi.org/10.1016/j.geoderma.2009.02.014
Lehmann J. Cowie A. Masiello CA. Kammann C. Woolf D. Amonette JE. Cayuela ML. Camps-Arbestain M, Whitman T. 2021. Biochar in climate change mitigation. Nature Geoscience, 14(12): 883-892. https://doi.org/10.1038/ s41561-021-00852-8
Libohova Z, Seybold C, Wysocki D, Wills S, Schoeneberger P, Williams C, Lindbo D, Stott D, Owens PR. 2018. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database. Journal of Soil and Water Conservation, 73(4): 411-421. https://doi.org/10.2489/jswc.73.4.411
Liu, H, Wang B, Fu C. 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, northeastern China. Advances in Atmospheric Sciences, 25: 757-764. https://doi.org/10.1007/s00376-008-0757-2
Mahmoodabadi M, Heydarpour E. 2014. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. International Agrophysics, 28(2): 169-176. https://doi.org/10.2478/intag-2014-0005
Mancosu N, Snyder RL, Kyriakakıs G, Spano D. 2015. Water Scarcity and Future Challenges for Food Production. Water, 7: 975-992. https://doi.org/10.3390/w7030975
McLean EO, 1982. Soil pH and Lime Requirement. Methods of Soil Analysis. Methods of Soil Analysis, Part 2, Physical and Mineralogical Methods. In: Klute A (editör). Agronomy Society of America and Soil Science Society America.
Nelson DW, Sommers LE. 1982. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis, Part 2, Physical and Mineralogical Methods. In: Klute A (editör). Agronomy Society of America and Soil Science Society America.
Nwadibia NO, Ugwu EI, Aduloju KA. 2010. Theoretical analysis of the influence of the thermal diffusivity of clay soil on the thermal energy distribution in clay soil of Abakaliki, Nigeria. Research J. of Applied Sciences, Engineering and Technology, 2(3): 216-221.
Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155: 35-44. https://doi.org/10.1016/j.still.2015.08.002
Ozlu E, Kumar S. 2018. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long‐term annual manure and inorganic fertilizer. Soil Science Society of America J., 82(5): 1243-1251. https://doi.org/10.2136/sssaj2018.02.0082
Qin Y. Horvath A. 2020. Use of alternative water sources in irrigation: potential scales, costs, and environmental impacts in California. Environmental Research Communications, 2(5): 055003. https://doi.org/10.1088/2515-7620/ab915e
Rao DLN, Pathak H. 1996. Ameliorative influence of organic matter on biological activity of salt‐affected soils. Arid Land Research and Management, 10(4): 311-319. https://doi.org/10.1080/15324989609381446
Roxy MS, Sumithranand VB, Renuka G. 2014. Estimation of soil moisture and its effect on soil thermal characteristics at Astronomical Observatory, Thiruvananthapuram, Kerala. J. of Earth System Sci., 123: 1793-1807. https://doi.org/10.1007/s12040-014-0509-x
Taban S, Turan MA, Katkat AV. 2013. Tarımda organik madde ve tavuk gübresi. Tavukçuluk Araştırma Dergisi, 10(1): 9-13.
Topçu P, Yavuz Ö, Tolunay A. 2022. Sürdürülebilir toprak yönetiminde toprak organik karbonunun önemi. Turkish Journal of Forest Science, 6(2): 604-614. https://doi.org/10.32328/turkjforsci.1039785
Ungureanu N, Vlăduț V, Voicu G. 2020. Water scarcity and wastewater reuse in crop irrigation. Sustainability, 12(21): 9055. https://doi.org/10.3390/su12219055
Wang D, Li C, Parikh SJ, Scow KM. 2019. Impact of biochar on water retention of two agricultural soils-A multi-scale analysis. Geoderma, 340: 185-191. https://doi.org/10.1016/j.geoderma.2019.01.012
Yang F, Zhang GL, Yang JL, Li DC, Zhao YG, Liu F, Yang R, Yang F. 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology, 519: 3086-3093. https://doi.org/10.1016/j.jhydrol.2014.10.054
Yerli C, Cakmakci T, Sahin U. 2022a. CO2 Emission from soil containing different organic manures in wetting-drying conditions and the relationships of CO2 emission with moisture, temperature and H2O emission. Journal of Agricultural Faculty of Gaziosmanpasa University, 39(3): 161-168. https://doi.org/10.55507/gopzfd.1187899
Yerli C, Cakmakci T, Sahin U. 2022b. CO2 emissions and their changes with H2O emissions, soil moisture, and temperature during the wetting-drying process of the soil mixed with different biochar materials. Journal of Water and Climate Change, 13(12): 4273-4282. https://doi.org/10.2166/wcc.2022.293
Zhang Q, Wang Y, Wu Y, Wang X, Du Z, Liu X, Song J. 2013. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature. Soil Science Society of America Journal, 77(5): 1478-1487. https://doi.org/10.2136/sssaj2012.0180
Zhang S, Meurey C, Calvet JC. 2019. Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations. Atmospheric Chemistry and Physics, 19(7): 5005-5020. https://doi.org/10.5194/acp-19-5005-2019
Zhang Z, Dong X, Wang S, Pu X. 2020. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems Xinjiang, China. Scienctific Reports, 10: 4718. https://doi.org/10.1038/s41598-020-61118-8
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.