Investigation of the Protective Role of Quercetin on Oxidative Stress and Endoplasmic Stress Pathway in 4-aminopyridine-induced Neuronal Damage

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v11is1.2505-2511.6413

Anahtar Kelimeler:

Kuersetin- 4-aminopridin- Nöronal Hasar- Oksidatif stres- Endoplazmik retikulum stresi

Özet

Quercetin (QU) is a flavonoid found in different fruits and vegetables. Studies report that QU may have positive effects on neurological diseases. However, the effect of QU on 4-aminopyridine (4-AP)-induced neurodegeneration in neuronal cells is still not fully elucidated. In this study, the effects of QU on 4-AP-induced hippocampal neuron damage in vitro and the possible role of oxidative stress and endoplasmic reticulum stress in this effect were investigated. The study was carried out using the HT-22 hippocampal neuronal cell line. The effect of pre-treatment with QU on cell viability after 4-AP-induced neuronal damage was determined by the XTT test. Cells were evaluated histopathologically for apoptotic nuclear change (ANC) using DAPI staining. The effects of QU on oxidative stress (total oxidant state (TOS) and total antioxidant status (TAS)) occurring after neuronal damage were evaluated with colorimetric commercial kits and endoplasmic reticulum stress markers (activating transcription factor 4 (ATF-4) and C/EBP homologous protein). (CHOP) was measured with the ELISA kits. While the cell viability rate decreased in the cells treated with 4-AP, it was determined that pre-treatment with QU reversed this situation. In terms of histopathology, treatment with 4-AP increased the number of ANC, while QU pre-treatment reduced it. In addition, in terms of biochemical evaluations, TOS, ATF-4, and CHOP increased in neuronal cells after 4-AP, and QU was determined to suppress this increase. In addition, QU normalized the decreased TAS levels following the 4-AP application. As a result, in the HT-22 cell line, it was found that QU treatment had a neuroprotective effect by suppressing oxidative stress and endoplasmic reticulum stress in 4-AP-induced neuronal damage.

Referanslar

AbdElrazek DA, Ibrahim MA, Hassan NH, Hassanen EI, Farroh KY, Abass HI. 2023. Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: Role of Nrf2/ HO-1/Keap-1 signaling pathway. Neurotoxicology, 98:16–28. doi: 10.1016/J.NEURO.2023.06.008

Ahlatcı A, Yıldızhan K, Tülüce Y, Bektaş M. 2022. Valproic Acid Attenuated PTZ-induced Oxidative Stress, Inflammation, and Apoptosis in the SH-SY5Y Cells via Modulating the TRPM2 Channel. Neurotox Res, 40(6):1979-1988. doi: 10.1007/s12640-022-00622-3

Aguiar CC, Almeida AB, Araújo PV, de Abreu RN, Chaves EM, do Vale OC, Macêdo DS, Woods DJ, Fonteles MM, Vasconcelos SM. 2012. Oxidative stress and epilepsy: Literature review. Oxid Med Cell Longev. 2012:795259. doi: 10.1155/2012/795259

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A. 2019. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J, 286:241–278. doi: 10.1111/FEBS.14608

Boonyong C, Angkhasirisap W, Kengkoom K, Jianmongkol S. 2023. Different protective capability of chlorogenic acid and quercetin against indomethacin-induced gastrointestinal ulceration. J Pharm Pharmacol, 75:427–436. doi: 10.1093/JPP/RGAC098

Das N, Dhanawat M, Shrivastava S. 2011. An overview on antiepileptic drugs. Drug Discov Ther, 6:178–193. doi: 10.5582/DDT.2012.V6.4.178

Emerit J, Edeas M, Bricaire F. 2004. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother, 58:39–46. doi: 10.1016/J.BIOPHA.2003.11.004

Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. 2020. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother, 131:110658. doi: 10.1016/J.BIOPHA.2020.110658

Gean PW, Chou SM, Chang FC. 1990. Epileptiform activity induced by 4-aminopyridine in rat amygdala neurons: the involvement of N-methyl-D-aspartate receptors. Eur J Pharmacol, 184:213–221. doi: 10.1016/0014-2999(90)90612-A

Heuzeroth H, Wawra M, Fidzinski P, Dag R, Holtkamp M. 2019. The 4-aminopyridine model of acute seizures in vitro elucidates efficacy of new antiepileptic drugs. Front Neurosci, 13:677. doi: 10.3389/FNINS.2019.00677/FULL

Ileriturk M, Kandemir O, Kandemir FM. 2022. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environ Toxicol, 37:2639–2650. doi: 10.1002/TOX.23624

Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. 2021. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol, 12:665031. doi: 10.3389/FPHAR.2021.665031/BIBTEX

Jiang Y, Xie G, Alimujiang A, Xie H, Yang W, Yin F, Huang D. 2023. Protective Effects of Querectin against MPP+-Induced Dopaminergic Neurons Injury via the Nrf2 Signaling Pathway. Front Biosci - Landmark, 28:42. doi: 10.31083/j.fbl2803042.

Jiao D, Xu J, Lou C, Luo Y, Ni C, Shen G, Fang M, Gong X. 2023. Quercetin alleviates subarachnoid hemorrhage-induced early brain injury via inhibiting ferroptosis in the rat model. Anat Rec (Hoboken), 306:638–650. doi: 10.1002/AR.25130

Kielkopf CL, Bauer W, Urbatsch IL. 2020. Bradford Assay for Determining Protein Concentration. Cold Spring Harb Protoc, 2020(4):102269. doi: 10.1101/pdb.prot102269.

Lindholm D, Wootz H, Korhonen L. 2006. ER stress and neurodegenerative diseases. Cell Death Differ, 13:385–392. doi: 10.1038/sj.cdd.4401778

Liu DC, Eagleman DE, Tsai NP. 2019. Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLOS Genet, 15:e1008364. doi: 10.1371/JOURNAL.PGEN.1008364

Madireddy S, Madireddy S. 2023. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci, 13(5):784. doi: 10.3390/brainsci13050784.

Manni A, Sun YW, Schell TD, Lutsiv T, Thompson H, Chen KM, Aliaga C, Zhu J, El-Bayoumy K. 2023. Complementarity between Microbiome and Immunity May Account for the Potentiating Effect of Quercetin on the Antitumor Action of Cyclophosphamide in a Triple-Negative Breast Cancer Model. Pharmaceuticals (Basel), 16(10):1422. doi: 10.3390/ph16101422.

Mansour FR, Abdallah IA, Bedair A, Hamed M. 2023. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem, 29:1-26. doi: 10.1080/10408347.2023.2269421.

Martinc B, Grabnar I, Vovk T. 2014. Antioxidants as a Preventive Treatment for Epileptic Process: A Review of the Current Status. Curr Neuropharmacol, 12:527. doi: 10.2174/1570159X12666140923205715

Pea F, Tapia R. 2000. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience, 101:547–561. doi: 10.1016/S0306-4522(00)00400-0

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev, 2017: 8416763. doi: 10.1155/2017/8416763

Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. 2023. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med, 25:163–178. doi: 10.1007/S12017-022-08724-Z

Rarinca V, Nicoara MN, Ureche D, Ciobica A. 2023. Exploitation of Quercetin’s Antioxidative Properties in Potential Alternative Therapeutic Options for Neurodegenerative Diseases. Antioxidants (Basel, Switzerland), 12(7):1418. doi: 10.3390/ANTIOX12071418

Riche K, Lenard NR. 2022. Quercetin’s Effects on Glutamate Cytotoxicity. Molecules, 7;27(21):7620. doi: 10.3390/molecules27217620.

Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem Pharmacol, 83:6–15. doi: 10.1016/J.BCP.2011.08.010

Sun H, Li X, Guo Q, Liu S. 2022. Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci, 43(11):6279-6298. doi: 10.1007/s10072-022-06302-6.

Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother, 121:109604. doi: 10.1016/J.BIOPHA.2019.109604

Taskiran AS, Ergul M. 2021. The modulator action of thiamine against pentylenetetrazole-induced seizures, apoptosis, nitric oxide, and oxidative stress in rats and SH-SY5Y neuronal cell line. Chem Biol Interact, 340:109447. doi: 10.1016/J.CBI.2021.109447

Taskiran AS, Ergul M, Gunes H, Ozturk A, Sahin B, Ozdemir E. 2021. The Effects of Proton Pump Inhibitors (Pantoprazole) on Pentylenetetrazole-Induced Epileptic Seizures in Rats and Neurotoxicity in the SH-SY5Y Human Neuroblastoma Cell Line. Cell Mol Neurobiol, 41:173–183. doi: 10.1007/S10571-020-00956-6/FIGURES/9

Taskiran AS, Tastemur Y. 2021. The role of nitric oxide in anticonvulsant effects of lycopene supplementation on pentylenetetrazole-induced epileptic seizures in rats. Exp Brain Res, 239:591–599. doi: 10.1007/S00221-020-06012-5/FIGURES/6

Taskıran AS, Ozdemir E, Gumus E, Ergul M. 2020. The effects of salmon calcitonin on epileptic seizures, epileptogenesis, and postseizure hippocampal neuronal damage in pentylenetetrazole-induced epilepsy model in rats. Epilepsy Behav, 113:107501. doi: 10.1016/J.YEBEH.2020.107501

Tavakoli Z, Tahmasebi Dehkordi H, Lorigooini Z, Rahimi-Madiseh M, Korani MS, Amini-Khoei H. 2023. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int Immunopharmacol, 116:109772. doi: 10.1016/J.INTIMP.2023.109772

Yildizhan K, Gunes H, Taskiran AS. 2023. Effect of Anakinra and Infliximab on Oxidative Stress and Caspase Activation in PTZ-Induced Acute Seizure in Rats. Eastern Journal of Medicine, 28(1): 75-81. doi: 10.5505/ejm.2023.84669

Yildizhan K, Naziroğlu M. 2019. Microglia and its role in neurodegenerative diseases. Journal of Cellular Neuroscience and Oxidative Stress, 11(2): 861-873. doi: 10.37212/jcnos.683407

Yildizhan K, Ozturk A. 2022. Quipazine treatment exacerbates oxidative stress in glutamate-induced HT-22 neuronal cells. The European Research Journal, 8(4): 521-528. doi: 10.18621/eurj.1027423

Wang G, Wang Y, Yao L, Gu W, Zhao S, Shen Z, Lin Z, Liu W, Yan T. 2022. Pharmacological Activity of Quercetin: An Updated Review. Evidence-based Complement Altern Med, 2022: 3997190. doi: 10.1155/2022/3997190

Xie R, Zhao W, Lowe S, Bentley R, Hu G, Mei H, Jiang X, Sun C, Wu Y, Yueying L. 2022. Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free Radic Biol Med, 191:212–226. doi: 10.1016/j.freeradbiomed.2022.09.001.

Yayınlanmış

2023-12-30

Nasıl Atıf Yapılır

Taşkıran, A. Şevki, & Topçu, A. (2023). Investigation of the Protective Role of Quercetin on Oxidative Stress and Endoplasmic Stress Pathway in 4-aminopyridine-induced Neuronal Damage. Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 11(s1), 2505–2511. https://doi.org/10.24925/turjaf.v11is1.2505-2511.6413

Sayı

Bölüm

Araştırma Makalesi