Exploring Impact of the Ultrasound and Combined Treatments on Food Quality: A Comprehensive Review
DOI:
https://doi.org/10.24925/turjaf.v12i2.349-365.6478Anahtar Kelimeler:
Ultrasonication- Food industry applications- Sustainable food processing- Non-invasive technology- Food quality enhancementÖzet
As a response to the evolving consumer demand for healthier food choices, ultrasound application in food processing emerges as a sustainable and green solution with no residual effects. This method, known for its cost-efficiency and sustainability, holds significant promise in meeting the increasing need for high-quality, chemical-free, and natural-tasting convenience foods in the ever-changing landscape of the food industry. Ultrasound, leveraging mechanical sound waves, spans across various frequencies: power ultrasound (20–100 kHz), high-frequency ultrasound (100 kHz-1 MHz), and diagnostic ultrasound (1–500 MHz). This study focuses on investigating the impact of ultrasound and combined treatments on food quality, summarizing their diverse applications across different unit operations such as texture and rheology, emulsification and homogenization, crystal formation and modification, dehydration and drying, fermentation, filtration, preservation and shelf-life extension, flavor enhancement, color and appearance, antioxidant activity, enzyme activity and food digestibility, bioavailability and bio-accessibility, and specific food divisions including unprocessed, minimally processed, processed, and ultra-processed foods, as well as culinary ingredients. It delves into their effects on technological and functional aspects of food products, explores emerging trends, offers possible recommendations in ultrasound technology for the food industry, while also recognizing existing challenges and limitations associated with ultrasound and related technologies.
Referanslar
Aadil, R. M., Zeng, X. A., Han, Z., & Sun, D. W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food chemistry, 141(3), 3201-3206. https://doi.org/10.1016/j.foodchem.2013.06.008
Abbas, S., Hayat, K., Karangwa, E., et al. (2013). An overview of ultrasound-assisted food-grade nano emulsions. Food Engineering Reviews, 5, 139–157. https://doi.org/10.1007/s12393-013-9066-3
Alshehhi, M., Wu, G., Kangsadan, T., Chew, K. W., & Show, P. L. (2023). Ultrasound-Assisted Food Processing: A Mini Review of Mechanisms, Applications, and Challenges. In E3S Web of Conferences (Vol. 428, p. 02011). EDP Sciences. https://doi.org/10.1051/e3sconf/202342802011
Ampofo, J., & Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955. https://doi.org/10.1016/j.ultsonch.2022.105955
An, K., Tang, D., Wu, J., Fu, M., Wen, J., Xiao, G., & Xu, Y. (2019). Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (Zingiber officinale Roscoe): Drying characteristics, antioxidant capacity, and volatile profiles. Food Science & Nutrition, 7(8), 2537-2545. https://doi.org/10.1002/fsn3.1103
Aslam, R., Alam, M. S., Kaur, J., Panayampadan, A. S., Dar, O. I., Kothakota, A., & Pandiselvam, R. (2022). Understanding the effects of ultrasound processing on texture and rheological properties of food. Journal of Texture Studies, 53(6), 775-799. https://doi.org/10.1111/jtxs.12644
Balakrishna, A. K., Abdul Wazed, M., & Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25(10), 1–19. https://doi.org/10.3390/molecules25102369
Barteri, M., Diociaiuti, M., Pala, A., & Rotella, S. (2004). Low frequency ultrasound induces aggregation of porcine fumarase by free radicals production. Biophysical Chemistry, 111(1), 35-42. https://doi.org/10.1016/j.bpc.2004.04.002
Beitia, E., Gkogka, E., Chanos, P., Hertel, C., Heinz, V., Valdramidis, V., & Aganovic, K. (2023). Microbial decontamination assisted by ultrasound‐based processing technologies in food and model systems: A review. Comprehensive Reviews in Food Science and Food Safety, 22(4), 2802-2849. https://doi.org/10.1111/1541-4337.13163
Belgheisi, S., Motamedzadegan, A., Milani, J. M., et al. (2021). Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion. Journal of Food Science and Technology, 58, 484–493. https://doi.org/10.1007/s13197-020-04557-5
Bermúdez-Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G. V. (2011). Ultrasound applications in food processing. Ultrasound technologies for food and bioprocessing, 65-105. https://doi.org/10.1007/978-1-4419-7472-3_3
Bevilacqua, A., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2015). Combination of ultrasound and antimicrobial compounds towards Pichia spp. and Wickerhamomyces anomalus in pineapple juice. LWT-Food Science and Technology, 64(2), 616-622. https://doi.org/10.1016/j.lwt.2015.06.038
Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293
Bhat, Z. F., Morton, J. D., Kumar, S., Bhat, H. F., Aadil, R. M., & Bekhit, A. E. D. A. (2022). Ultrasonication as an emerging technology for processing of animal derived foods: A focus on in vitro protein digestibility. Trends in Food Science & Technology, 124, 309-322. https://doi.org/10.1016/j.tifs.2022.04.012
Bozkir, H., Ergün, A. R., Serdar, E., Metin, G., & Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, 54, 135-141. https://doi.org/10.1016/j.ultsonch.2019.02.006
Bund, R. K., & Pandit, A. B. (2007). Sonocrystallization: effect on lactose recovery and crystal habit. Ultrasonics sonochemistry, 14(2), 143–152. https://doi.org/10.1016/j.ultsonch.2006.06.003
Cao, X., Cai, C., Wang, Y., & Zheng, X. (2019). Effects of Ultrasound Processing on Physicochemical Parameters, Antioxidants, and Color Quality of Bayberry Juice. Journal of Food Quality, vol. 2019, Article ID 7917419, 12 pages. https://doi.org/10.1155/2019/7917419
Castañeda‐López, G. G., Ulloa, J. A., Rosas‐Ulloa, P., Ramírez‐Ramírez, J. C., Gutiérrez‐Leyva, R., Silva‐Carrillo, Y., & Ulloa‐Rangel, B. E. (2021). Ultrasound use as a pretreatment for shrimp ( Litopenaeus vannamei ) dehydration and its effect on physicochemical, microbiological, structural, and rehydration properties. Journal of Food Processing and Preservation, 45(4). doi:10.1111/jfpp.15366
Chandrapala, J., Zisu, B., Kentish, S. E., & Ashokkumar, M. (2012). The effects of high-intensity ultrasound on the structural and functional properties of α-lactalbumin, β-lactoglobulin and their mixtures. Food Research International, 48, 940-943. https://doi.org/10.1016/J.FOODRES.2012.02.021
Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods, 11(1), 122. https://doi.org/10.3390/foods11010122
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry, 63, 104953. https://doi.org/10.1016/j.ultsonch.2019.104953
Chen, F., Zhang, M., Yang, C.-h. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics Sonochemistry, 63, 104953. https://doi.org/10.1016/j.ultsonch.2019.104953
Chen, W., Ma, H., & Wang, Y.-Y. (2022). Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. Ultrasonics Sonochemistry, 85, 105993. https://doi.org/10.1016/j.ultsonch.2022.105993
Chen, X., Qi, Y., Zhu, C., & Wang, Q. (2019). Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. International journal of biological macromolecules, 131, 273-281. https://doi.org/10.1016/j.ijbiomac.2019.03.077
Cho, W. I., & Chung, M. S. (2020). Bacillus spores: A review of their properties and inactivation processing technologies. Food science and biotechnology, 29, 1447-1461. https://doi.org/10.1007/s10068-020-00809-4
Chow, R., Blindt, R., Chivers, R., & Povey, M. (2003). The sonocrystallisation of ice in sucrose solutions: Primary and secondary nucleation. Ultrasonics, 41(8), 595-604. https://doi.org/10.1016/j.ultras.2003.08.001
Córdova, A., Astudillo-Castro, C., Ruby-Figueroa, R., Valencia, P., & Soto, C. (2020). Recent advances and perspectives of ultrasound assisted membrane food processing. Food Research International, 133, 109163. https://doi.org/10.1016/j.foodres.2020.109163
Córdova, A., Henríquez, P., Nuñez, H., Rico-Rodriguez, F., Guerrero, C., Astudillo-Castro, C., & Illanes, A. (2022). Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts, 12, 107. https://doi.org/10.3390/catal12010107
da Silva Júnior, E. V., de Melo, L. L., de Medeiros, R. A. B., Barros, Z. M. P., & Azoubel, P. M. (2018). Influence of ultrasound and vacuum assisted drying on papaya quality parameters. Lwt, 97, 317-322. https://doi.org/10.1016/j.lwt.2018.07.017
Darsana, K., & Sivakumar, P. (2023). Potential of Ultrasound in Food Processing: An Overview. Current Journal of Applied Science and Technology, 42(32), 14-34. https://doi:10.9734/cjast/2023/v42i324217
Deora, N. S., Misra, N. N., Deswal, A., Mishra, H. N., Cullen, P. J., & Tiwari, B. K. (2013). Ultrasound for Improved Crystallisation in Food Processing. Food Engineering Reviews, 5, 36-44. https://doi.org/10.1007/s12393-012-9061-0
Djenouhat, M., Hamdaoui, O., Chiha, M., & Samar, M. H. (2008). Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 1: Membrane stability. Separation and Purification Technology, 62(3), 636-641. https://doi.org/10.1016/j.seppur.2008.03.018
Drakopoulou, S., Terzakis, S., Fountoulakis, MS., Mantzavinos, D. and Manios, T. 2009 Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16 : 629-634. https://doi:10.1016/j.ultsonch.2008.11.011
Ekezie, F. G. C., Cheng, J. H., & Sun, D. W. (2018). Effects of mild oxidative and structural modifications induced by argon plasma on physicochemical properties of actomyosin from king prawn (Litopenaeus vannamei). Journal of Agricultural and Food Chemistry, 66(50), 13285-13294. https://doi.org/10.1021/acs.jafc.8b05178
Ercan, S. Ş., & Soysal, Ç. (2013). Use of ultrasound in food preservation. Natural Science, 5(8), 5–13. https://doi.org/10.4236/ns.2013.58a2002
Feng, H., Barbosa-Cánovas, G. V., & Weiss, J. (Eds.). (2011). Ultrasound technologies for food and bioprocessing (Vol. 1, p. 599). New York: Springer. https://doi:10.1007/978-1-4419-7472-3
Fernandes, F.A.N., Braga, T.R., Silva, E.O. et al. Use of ultrasound for dehydration of mangoes (Mangifera indica L.): kinetic modeling of ultrasound-assisted osmotic dehydration and convective air-drying. J Food Sci Technol 56, 1793–1800 (2019). https://doi.org/10.1007/s13197-019-03622-y
Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 7, 164. https://doi.org/10.3390/foods7100164
Gamboa-Santos, J., Soria, A. C., Pérez-Mateos, M., Carrasco, J. A., Montilla, A., & Villamiel, M. (2013). Vitamin C content and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chemistry, 136(2), 782-788. https://doi.org/10.1016/j.foodchem.2012.07.122
Gao, X., Zhang, J., Liu, E., Yang, M., Chen, S., Hu, F., ... & Yu, X. (2019). Enhancing the taste of raw soy sauce using low intensity ultrasound treatment during moromi fermentation. Food Chemistry, 298, 124928. https://doi.org/10.1016/j.foodchem.2019.05.202
Gholamhosseinpour, A., & Hashemi, S. M. B. (2019). Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of Food Process Engineering, 42(1), e12930. https://doi.org/10.1111/jfpe.12930
Gómez-Salazar, J. A., Galván-Navarro, A., Lorenzo, J. M., & Sosa-Morales, M. E. (2021). Ultrasound effect on salt reduction in meat products: a review. Current opinion in food science, 38, 71-78. https://doi.org/10.1016/j.cofs.2020.10.030
Guerra-Almonacid, C. M., Torruco-Uco, J. G., Méndez-Arteaga, J. J., & Rodríguez-Miranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 31(4), 288–296. https://doi.org/10.9755/ejfa.2019.v31.i4.1938
Guimarães, J. T., Balthazar, C. F., Scudino, H., Pimentel, T. C., Esmerino, E. A., Ashokkumar, M., Freitas, M. Q., & Cruz, A. G. (2019). High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrasonics Sonochemistry, 57, 12-21. https://doi.org/10.1016/j.ultsonch.2019.05.004
Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950. https://doi.org/10.1016/j.ultsonch.2019.104950
Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., & Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144-149. https://doi.org/10.1016/j.ultsonch.2016.12.018
Iorio, M. C., Bevilacqua, A., Corbo, M. R., Campaniello, D., Sinigaglia, M., & Altieri, C. (2019). A case study on the use of ultrasound for the inhibition of Escherichia coli O157: H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 52, 477-483. https://doi.org/10.1016/j.ultsonch.2018.12.026
Jalilzadeh, A., Hesari, J., Peighambardoust, S. H., & Javidipour, I. (2018). The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. Journal of Dairy Science, 101(7), 5809-5820. https://doi.org/10.3168/jds.2017-14352
Jiang, Q., Zhang, M., & Xu, B. (2020). Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrasonics Sonochemistry, 69, 105261. https://doi.org/10.1016/j.ultsonch.2020.105261
Jiang, Y. S., Zhang, S. B., Zhang, S. Y., & Peng, Y. X. (2021). Comparative study of high-intensity ultrasound and high-pressure homogenization on physicochemical properties of peanut protein-stabilized emulsions and emulsion gels. Journal of Food Process Engineering, 44(6), e13710. https://doi.org/10.1111/jfpe.13710
Kabbani, D., Sepulcre, F., & Wedekind, J. (2011). Ultrasound-assisted liquefaction of rosemary honey: Influence on rheology and crystal content. Journal of Food Engineering, 107(2), 173-178. https://doi.org/10.1016/j.jfoodeng.2011.06.027
Kaveh, S., Gholamhosseinpour, A., Hashemi, S. M. B., Jafarpour, D., Castagnini, J. M., Phimolsiripol, Y., & Barba, F. J. (2023). Recent advances in ultrasound application in fermented and non-fermented dairy products: antibacterial and bioactive properties. International Journal of Food Science & Technology, 58(7), 3591-3607. https://doi.org/10.1111/ijfs.16457
Khan, A., Beg, M. R., & Waghmare, P. (2021). Intensification of biokinetics of enzymes using ultrasound-assisted methods: A critical review. Biophysical Reviews, 13, 417–423. https://doi.org/10.1007/s12551-021-00806-9
Khandpur, P., & Gogate, P. R. (2015). Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrasonics Sonochemistry, 27, 125-136. https://doi.org/10.1016/j.ultsonch.2015.05.008
Khouryieh, H. A. (2021). Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. https://doi.org/10.1016/j.ifset.2020.102559
Kozell, A., Solomonov, A., & Shimanovich, U. (2023). Effects of sound energy on proteins and their complexes. Volume 597, Issue 24, 3013-3037. https://doi.org/10.1002/1873-3468.14755
Kumar, G., Upadhyay, S., Yadav, D. K., Malakar, S., Dhurve, P., & Suri, S. (2023). Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio-functional properties: A review. Journal of Food Process Engineering, 46(6), e14238. https://doi.org/10.1111/jfpe.14238
Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721-727. https://doi.org/10.1016/j.ultsonch.2009.02.008
Leong, T., Johansson, L., Juliano, P., Mawson, R., McArthur, S. and Manasseh, R., 2014a. Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrasonics sonochemistry, 21(4), 1289-1298. https://doi.org/10.1016/j.ultsonch.2014.01.007
Leong, T., Juliano, P., & Knoerzer, K. (2017). Advances in ultrasonic and megasonic processing of foods. Food Engineering Reviews, 9(3), 237-256. https://doi.org/10.1007/s12393-017-9167-5
Leong, T., Juliano, P., Johansson, L., Mawson, R., McArthur, S.L. and Manasseh, R., 2014b. Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrasonics sonochemistry, 21(6), 2092-2098. https://doi.org/10.1016/j.ultsonch.2014.02.003
Li, S., Zhang, R., Lei, D., Huang, Y., Cheng, S., Zhu, Z., ... & Cravotto, G. (2021). Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends in Food Science & Technology, 109, 1-15. https://doi.org/10.1016/j.tifs.2021.01.017
Li, W., Gong, P., Ma, H., Xie, R., Wei, J., & Xu, M. (2022). Ultrasound treatment degrades, changes the color, and improves the antioxidant activity of the anthocyanins in red radish. LWT, 165, 113761. https://doi.org/10.1016/j.lwt.2022.113761
Li, W., Ma, H., He, R., Ren, X., & Zhou, C. (2021). Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. Ultrasonics Sonochemistry, 76, 105613. https://doi.org/10.1016/j.ultsonch.2021.105613
Li, X., Zhang, Y., Yuan, J., & Sun, P. (2021). Effects of ultrasound on the structure and emulsifying properties of soy protein isolate and soy protein-sugar conjugate. Ultrasonics Sonochemistry, 70, Article 105326. https://doi.org/8.1016/j.ultsonch.2020.105326
Li, Y., & Xiang, D. (2019). Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization. PLOS ONE, 14(3), e02130189. https://doi.org/10.1371/journal.pone.0213189
Li, Y., Wang, X., Wu, Z., Wan, N., & Yang, M. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68, 105219. https://doi.org/10.1016/j.ultsonch.2020.105219
Li, Y., Wang, X., Wu, Z., Wan, N., & Yang, M. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68, 105219. https://doi.org/10.1016/j.ultsonch.2020.105219
Liu, X., Zhang, C., Wang, H., Wang, Y., Zhu, D., & Liu, H. (2023). Ultrasonic treatment maintains the flavor of the melon juice. Ultrasonics Sonochemistry, 92, 106284. https://doi.org/10.1016/j.ultsonch.2022.106284
Luque de Castro, M. D., and Priego-Capote, F., 2007. Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics sonochemistry, 14(6), 717–724. https://doi.org/10.1016/j.ultsonch.2006.12.004
Lyu, Y., Bi, J., Chen, Q., Li, X., Wu, X., & Gou, M. (2022). Effects of ultrasound, heat, ascorbic acid and CaCl2 treatments on color enhancement and flavor changes of freeze-dried carrots during the storage period. Food Chemistry, 373, 131526. https://doi.org/10.1016/j.foodchem.2021.131526
Martini, S., Suzuki, A.H., & Hartel, R.W. (2008). Effect of High Intensity Ultrasound on Crystallization Behavior of Anhydrous Milk Fat. Journal of the American Oil Chemists' Society, 85, 621-628.https:// doi:10.1007/S11746-008-1247-5
Meena, L., Nanje Gowda, N. A., Sunil, C. K., Rawson, A., & Janghu, S. (2024). Effect of ultrasonication on food bioactive compounds and their bio-accessibility: A review. Journal of Food Composition and Analysis, 126, 105899. https://doi.org/10.1016/j.jfca.2023.105899.
Mieszczakowska-Frąc, M., Celejewska, K., & Płocharski, W. (2021). Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants, 10, 54. https://doi.org/10.3390/antiox10010054
Muthukrishnan, Y., Sunial, C. K., & Rawson, A. (2022). Power Ultrasound: A Green Technology for Processing of Food. In Food Processing and Preservation Technology (1st ed., pp. 31). Apple Academic Press. eBook ISBN: 9781003153184
Muzaffar, S., Ahmad, M., Wani, S. M., Gani, A., Baba, W. N., Shah, U., ... & Wani, T. A. (2016). Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). Journal of food science and technology, 53, 2752-2759. https://doi.org/10.1007/s13197-016-2247-3
Neto, L., Millan-Sango, D., Brincat, J. P., Cunha, L. M., & Valdramidis, V. P. (2019). Impact of ultrasound decontamination on the microbial and sensory quality of fresh produce. Food Control, 104, 262-268. https://doi.org/10.1016/j.foodcont.2019.04.047
Nowak, K. W., Zielinska, M., & Waszkielis, K. M. (2019). The effect of ultrasound and freezing/thawing treatment on the physical properties of blueberries. Food Science and Biotechnology, 28, 741–749. https://doi.org/10.1007/s10068-018-0528-5
Önal, B., Adiletta, G., Di Matteo, M., Russo, P., Ramos, I. N., & Silva, C. L. M. (2021). Microwave and ultrasound pre-treatments for drying of the “Rocha” pear: Impact on phytochemical parameters, color changes and drying kinetics. Foods, 10, 853. https://doi.org/10.3390/foods10040853
Onyeaka, H., Miri, T., Hart, A., Anumudu, C., & Nwabor, O. F. (2023). Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International, 39(7), 3663-3675. https://doi.org/10.1080/87559129.2021.2013255
Ordóñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2021). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT, 139, 110598. https://doi.org/10.1016/j.lwt.2020.110598
Palanisamy, N., Seale, B., Turner, A., & Hemar, Y. (2019). Low frequency ultrasound inactivation of thermophilic bacilli (Geobacillus spp. and Anoxybacillus flavithermus) in the presence of sodium hydroxide and hydrogen peroxide. Ultrasonics sonochemistry, 51, 325-331. https://doi.org/10.1016/j.ultsonch.2018.09.025
Pandiselvam, R., Aydar, A. Y., Kutlu, N., Aslam, R., Sahni, P., Mitharwal, S., ... Kothakota, A. (2023). Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrasonics Sonochemistry, 92, 106261. https://doi.org/10.1016/j.ultsonch.2022.106261
Paniwnyk, L. (2017). Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 38, 794-806. https://doi.org/10.1016/j.ultsonch.2016.12.025
Paniwnyk, L., Alarcon-Rojo, A., Rodriguez-Figueroa, J. C., & Toma, M. (2017). Chapter 10 - The Use of Ultrasound as an Enhancement Aid to Food Extraction. In A. M. Grumezescu & A. M. Holban (Eds.), Handbook of Food Bioengineering: Ingredients Extraction by Physicochemical Methods in Food (pp. 399-440). Academic Press. ISBN 9780128115213. https://doi.org/10.1016/B978-0-12-811521-3.00010-7
Pinela, J., Prieto, M. A., Pereira, E., Jabeur, I., Barreiro, M. F., Barros, L., & Ferreira, I. C. F. R. (2019). Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry, 275, 309-321. https://doi.org/10.1016/j.foodchem.2018.09.118
Pinon, M., Alarcon-Rojo, A., Paniwnyk, L., Mason, T., Luna, L., & Renteria, A. (2018). Ultrasound for improving the preservation of chicken meat. Food Science and Technology, 39, 129-135. https://doi.org/10.1590/fst.39017
Pinto, C. A., Lima, V. J., Amaral, R. A., Pateiro, M., Lorenzo, J. M., & Saraiva, J. A. (2021). Development of fermented food products assisted by ultrasound. Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound (pp. 275-298). Academic Press. https://doi.org/10.1016/B978-0-12-818275-8.00006-4.
Pinto, C. A., Lima, V. J., Amaral, R. A., Pateiro, M., Lorenzo, J. M., & Saraiva, J. A. (2021). Development of fermented food products assisted by ultrasound. Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound (pp. 275-298). Academic Press. ISBN 9780128182758. https://doi.org/10.1016/B978-0-12-818275-8.00006-4
Piyasena, P., Mohareb, E. and Mckellar, R.C., 2003. Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87, 207-216. https://doi:10.1016/S0168-1605(03)00075-8
Pohlman, D. A., Boukerche, M., Chen, J., Shariff, H., & Nere, N. K. (2023). Experimental and Computational Evaluation of Sonofragmentation: Toward Enhanced Understanding of Sonocrystallization for Pharmaceuticals. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.3c00811
Qian, J., Chen, D., Zhang, Y., et al. (2023). Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods (Basel, Switzerland), 12(21), 4027. https://doi.org/10.3390/foods12214027
Qureshi, T. M., Nadeem, M., Maken, F., Tayyaba, A., Majeed, H., & Munir, M. (2020). Influence of ultrasound on the functional characteristics of indigenous varieties of mango (Mangifera indica L.). Ultrasonics Sonochemistry, 64, 104987. https://doi.org/10.1016/j.ultsonch.2020.104987
Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Critical reviews in food science and nutrition, 51(8), 705-722. https://doi.org/10.1080/10408391003770583
Rathnakumar, K., Kalaivendan, R. G. T., Eazhumalai, G., Charles, A. P. R., Verma, P., Rustagi, S., ... & Pandiselvam, R. (2023). Applications of ultrasonication on food enzyme inactivation-Recent review report (2017-2022). Ultrasonics Sonochemistry, 106407. https://doi.org/10.1016/j.ultsonch.2023.106407
Režek Jambrak, A., Lelas, V., Herceg, Z., Badanjak, M., Batur, V., & Muža, M. (2009). Advantages and disadvantages of high power ultrasound application in the dairy industry. Mljekarstvo: Časopis za unaprjeđenje proizvodnje i prerade mlijeka, 59(4), 267-281.
Roobab, U., Abida, A., Madni, G. M., Ranjha, M. M. A. N., Zeng, X.-A., Khaneghah, A. M., & Aadil, R. M. (2023). An updated overview of ultrasound-based interventions on bioactive compounds and quality of fruit juices. Journal of Agriculture and Food Research, 14, 100864. https://doi.org/10.1016/j.jafr.2023.100864
Roueita, G., Hojjati, M., & Noshad, M. (2020). Study of physicochemical properties of dried kiwifruits using the natural hypertonic solution in ultrasound-assisted osmotic dehydration as pretreatment. International Journal of Fruit Science, 20(sup2), S491-S507. https://doi.org/10.1080/15538362.2020.1741057
Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2016). A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Science and Technology International, 22(4), 288-301. https://doi.org/10.1177/1082013215596466
Salazar, J., Chávez, J. A., Turó, A., & García-Hernández, M. J. (2010). Effect of ultrasound on food processing. Novel food processing: Effects on rheological and functional properties, 65-84.
Salehi, F. (2023). Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review. Food Bioscience, 51, 102307. https://doi.org/10.1016/j.fbio.2022.102307
Sarker, A., & Ali Siddiqui, R. (2023). Effects of ultrasonic processing on the quality properties of fortified yogurt. Ultrasonics Sonochemistry, 98, 106533. https://doi.org/10.1016/j.ultsonch.2023.106533
Shanmugam, A., & Ashokkumar, M. (2014). Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization. Food Hydrocolloids, 39, 151-162. https://doi.org/10.1016/j.foodhyd.2014.01.006
Sheng, L., Liu, Q., Dong, W., & Cai, Z. (2022). Effect of high intensity ultrasound assisted glycosylation on the gel properties of ovalbumin: Texture, rheology, water state and microstructure. Food Chemistry, 372, 131215. https://doi.org/10.1016/j.foodchem.2021.131215
Sikes, A. L., Mawson, R. F., Stark, J., & Warner, R. D. (2014). Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrasonics Sonochemistry, 21(6), 2138-2143. https://doi.org/10.1016/j.ultsonch.2014.03.008
Silva, F. V. (2020). Resistant moulds as pasteurization target for cold distributed high pressure and heat assisted high pressure processed fruit products. Journal of food engineering, 282, 109998. https://doi.org/10.1016/j.jfoodeng.2020.109998
Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/j.ultsonch.2021.105506
Singla, M., Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/j.ultsonch.2021.105506
Strieder, M. M., Neves, M. I. L., Silva, E. K., & Meireles, M. A. A. (2020). Low-frequency and high-power ultrasound-assisted production of natural blue colorant from the milk and unripe Genipa americana L. Ultrasonics Sonochemistry, 66, 105068. https://doi.org/10.1016/j.ultsonch.2020.105068
Su, J., & Cavaco-Paulo, A. (2021). Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry, 76, 105653. https://doi.org/10.1016/j.ultsonch.2021.105653
Sun, J., Zhang, W., Hu, H., Tang, L., & Zhuang, X. (2019). Effects of ultrasound on the inactivation of Bacillus subtilis and the structural characteristics of their spores. Ultrasonics Sonochemistry, 50, 176–184. https://doi.org/10.1016/j.ultsonch.2018.08.022
Taha, A., Ahmed, E., Ismaiel, A., Ashokkumar, M., Xu, X., Pan, S., & Hu, H. (2020). Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology, 105, 363-377. https://doi.org/10.1016/j.tifs.2020.09.024
Taha, A., Mehany, T., Pandiselvam, R., Siddiqui, S. A., Mir, N. A., Malik, M. A., Sujayasree, O. J., Alamuru, K. C., Khanashyam, A. C., Casanova, F., Xu, X., Pan, S., & Hu, H. (2022). Sonoprocessing: Mechanisms and recent applications of power ultrasound in food. Critical Reviews in Food Science and Nutrition. Advance online publication. https://doi.org/10.1080/10408398.2022.2161464
Tao, Y., Han, M., Gao, X., Han, Y., Show, P. L., Liu, C., ... & Xie, G. (2019). Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrasonics sonochemistry, 53, 192-201. https://doi.org/10.1016/j.ultsonch.2019.01.003
Téllez-Morales, J. A., Hernández-Santo, B., Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787. https://doi.org/10.1016/j.ultsonch.2019.104787
Terefe, N. S., Delon, A., Buckow, R., & Versteeg, C. (2015). Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation. Food Chemistry, 188, 193-200. https://doi.org/10.1016/j.foodchem.2015.04.040
Terefe, N. S., Pasero, C., Fernando, S., Rout, M., Woonton, B., & Mawson, R. (2011). Application of low intensity ultrasound to improve the textural quality of processed vegetables. In Institute of Food Technologists (IFT) Annual Meeting. IFT, New Orleans, LA. DOI: 10.13140/RG.2.2.16037.29927
Terefe, N. S., Sikes, A. L., & Juliano, P. (2016). Ultrasound for Structural Modification of Food Products. In K. Knoerzer, P. Juliano, & G. Smithers (Eds.), Innovative Food Processing Technologies (pp. 209-230). Woodhead Publishing. ISBN 9780081002940. https://doi.org/10.1016/B978-0-08-100294-0.00008-0
Tian, Z. M., Wan, M. X., Wang, S. P., & Kang, J. Q. (2004). Effects of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry, 11(6), 399-404. https://doi.org/10.1016/j.ultsonch.2003.09.004
Tiwari, B. K., & Mason, T. J. (2012). Ultrasound processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 135-165). Academic press. https://doi.org/10.1016/B978-0-12-381470-8.00006-2
Tiwari, B. K., O’donnell, C. P., Patras, A., Brunton, N., & Cullen, P. J. (2009). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 228, 717-724. https://doi.org/10.1007/s00217-008-0982-z
Umego, E. C., He, R., Ren, W., Xu, H., & Ma, H. (2021). Ultrasonic-assisted enzymolysis: Principle and applications. Process Biochemistry, 100, 59-68. https://doi.org/10.1016/j.procbio.2020.09.033
Vanga, S. K., Wang, J., & Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. Lwt, 131, 109708. https://doi.org/10.1016/j.lwt.2020.109708
Vivek, K., Mishra, S., & Sasikumar, R. (2017). Effect of ultra-sonication on postharvest quality parameters and microbial load on Docynia indica. Scientia Horticulturae, 225, 163-170. https://doi.org/10.1016/j.scienta.2017.07.006
Wang, H., Zhao, Q.-S., Wang, X.-D., Hong, Z.-D., & Zhao, B. (2019). Pretreatment of ultrasound combined vacuum enhances the convective drying efficiency and physicochemical properties of okra (Abelmoschus esculentus). LWT, 112, 108201. https://doi.org/10.1016/j.lwt.2019.05.099
Wang, N., Zhou, X., Wang, W., Wang, L., Jiang, L., Liu, T., & Yu, D. (2021). Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex. Ultrasonics Sonochemistry, 80, 105808. https://doi.org/10.1016/j.ultsonch.2021.105808
Wordon, B. A., Mortimer, B., & McMaster, L. D. (2011). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20 kHz) and heat for the application of hurdle technology. Food Research International, 47(2), 134-139. https://doi.org/10.1016/j.foodres.2011.04.038
Xu, B., Azam, S. M. R., Feng, M., Wu, B., Yan, W., Zhou, C., & Ma, H. (2021). Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrasonics Sonochemistry, 81, 105855. https://doi.org/10.1016/j.ultsonch.2021.105855
Xu, B., Tiliwa, E. S., Yan, W., Azam, S. M. R., Wei, B., Zhou, C., Ma, H., & Bhandari, B. (2022). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 152, 110744. https://doi.org/10.1016/j.foodres.2021.110744
Xu, B., Tiliwa, E. S., Yan, W., Azam, S. R., Wei, B., Zhou, C., ... & Bhandari, B. (2022). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 152, 110744. https://doi.org/10.1016/j.foodres.2021.110744
Yu, Z., Su, Y., Zhang, Y., Zhu, P., Mei, Z., Zhou, X., & Yu, H. (2021). Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chemistry, 357, 129805. https://doi.org/10.1016/j.foodchem.2021.129805
Zhang, H., Chen, G., Liu, M., Mei, X., Yu, Q., & Kan, J. (2020). Effects of multi-frequency ultrasound on physicochemical properties, structural characteristics of gluten protein and the quality of noodle. Ultrasonics Sonochemistry, 67, 105135. https://doi.org/10.1016/j.ultsonch.2020.105135
Zhang, J., Liu, Q., Chen, Q., Sun, F., Liu, H., & Kong, B. (2022). Synergistic modification of pea protein structure using high-intensity ultrasound and pH-shifting technology to improve solubility and emulsification. Ultrasonics Sonochemistry, 88, 106099. https://doi.org/10.1016/j.ultsonch.2022.106099
Zhang, J., Zhang, W., & Xing, L. (2021). Effects of ultrasound on the taste components from aqueous extract of unsmoked bacon. Food Chemistry, 365, 130411. https://doi.org/10.1016/j.foodchem.2021.130411
Zhang, L., Jin, Y., Deng, L., Jin, H., & Hu, X. (2018). The effect of ultrasound on the properties of α-amylase. Journal of Food Engineering, 223, 125–132. https://doi.org/10.1016/j.jfoodeng.2017.11.029
Zhang, L., Wang, L.-J., Jiang, W., & Qian, J.-Y. (2017). Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT, 84, 73-81. https://doi.org/10.1016/j.lwt.2017.05.048
Zhang, W., & Xiao, H. (2020). High-intensity ultrasound modification of rice protein: Functional and structural characterization. Ultrasonics Sonochemistry, 61, Article 104826. https://doi.org/10.1016/j.ultsonch.2019.104826
Zhao, L., Zhang, S., Uluko, H., Liu, L., Lu, J., Xue, H., Kong, F. and Lv, J., 2014. Effect of ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chemistry, 165, 167-174. https://doi.org/10.1016/j.foodchem.2014.05.081
Zhou, L., Zhang, W., Wang, J., Zhang, R., & Zhang, J. (2022). Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrasonics Sonochemistry, 82, 105885. https://doi.org/10.1016/j.ultsonch.2021.105885
Zhou, Y., Wang, Y., Pan, Q., Wang, X. X., Li, P. J., Cai, K. Z., & Chen, C. G. (2020). Effect of salt mixture on flavor of reduced‐sodium restructured bacon with ultrasound treatment. Food Science & Nutrition, 8(7), 3857-3871. https://doi.org/10.1002/fsn3.1679
Zhou, Z., Guo, Y., & Wang, Y. (2021). Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network. Medical Image Analysis, 71, 102086. https://doi.org/10.1016/j.media.2021.102086
Zhu, Z., Yang, R., Wang, Q., Xu, Y., & Tang, J. (2019). Effects of ultrasound-assisted acid treatment on the structure and physicochemical properties of soy protein isolate. Ultrasonics Sonochemistry, 58, Article 104594. https://doi.org/10.1016/j.ultsonch.2019.104594
Zou, Y., Kang, D., Liu, R., Qi, J., Zhou, G., & Zhang, W. (2018). Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics sonochemistry, 46, 36-45. https://doi.org/10.1016/j.ultsonch.2018.04.005
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.