Fish Freshness Detection Through Artificial Intelligence Approaches: A Comprehensive Study

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v12i2.290-295.6670

Anahtar Kelimeler:

İngilizce

Özet

Fish is regarded as an important protein source in human nutrition due to its high concentration of omega-3 fatty acids In traditional global cuisine, fish holds a prominent position, with seafood restaurants, fish markets, and eateries serving as popular venues for fish consumption. However, it is imperative to preserve fish freshness as improper storage can lead to rapid spoilage, posing risks of potential foodborne illnesses. To address this concern, artificial intelligence techniques have been utilized to evaluate fish freshness, introducing a deep learning and machine learning approach. Leveraging a dataset of 4476 fish images, this study conducted feature extraction using three transfer learning models (MobileNetV2, Xception, VGG16) and applied four machine learning algorithms (SVM, LR, ANN, RF) for classification. The synergy of Xception and MobileNetV2 with SVM and LR algorithms achieved a 100% success rate, highlighting the effectiveness of machine learning in preventing foodborne illness and preserving the taste and quality of fish products, especially in mass production facilities.

Referanslar

Alkaff, A. K., & Prasetiyo, B. (2022). Hyperparameter Optimization on CNN Using Hyperband on Tomato Leaf Disease Classification. 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 479–483.

Barreiro, E., Munteanu, C. R., Cruz-Monteagudo, M., Pazos, A., & González-Díaz, H. (2018). Net-Net auto machine learning (AutoML) prediction of complex ecosystems. Scientific Reports, 8(1), 12340.

Chhabra, H. S., Srivastava, A. K., & Nijhawan, R. (2020). A Hybrid Deep Learning Approach for Automatic Fish Classification. In P. K. Singh, B. K. Panigrahi, N. K. Suryadevara, S. K. Sharma, & A. P. Singh (Eds.), Proceedings of ICETIT 2019 (Vol. 605, pp. 427–436). Springer International Publishing. https://doi.org/10.1007/978-3-030-30577-2_37

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1251–1258.

Dighriri, I. M., Alsubaie, A. M., Hakami, F. M., Hamithi, D. M., Alshekh, M. M., Khobrani, F. A., Dalak, F. E., Hakami, A. A., Alsueaadi, E. H., Alsaawi, L. S., Alshammari, S. F., Alqahtani, A. S., Alawi, I. A., Aljuaid, A. A., & Tawhari, M. Q. (2022). Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus, 14(10), e30091. https://doi.org/10.7759/cureus.30091

Dutta, M. K., Issac, A., Minhas, N., & Sarkar, B. (2016). Image processing based method to assess fish quality and freshness. Journal of Food Engineering, 177, 50–58.

Innes, J. K., & Calder, P. C. (2020). Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. International Journal of Molecular Sciences, 21(4), 1362. https://doi.org/10.3390/ijms21041362

Jany Arman, R., Hossain, M., & Hossain, S. (2022). Fish Classification using Saliency Detection Depending on Shape and Texture. Computación y Sistemas, 26(1), 303–310.

Jennings, S., Stentiford, G. D., Leocadio, A. M., Jeffery, K. R., Metcalfe, J. D., Katsiadaki, I., Auchterlonie, N. A., Mangi, S. C., Pinnegar, J. K., Ellis, T., Peeler, E. J., Luisetti, T., Baker‐Austin, C., Brown, M., Catchpole, T. L., Clyne, F. J., Dye, S. R., Edmonds, N. J., Hyder, K., … Verner‐Jeffreys, D. W. (2016). Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish and Fisheries, 17(4), 893–938. https://doi.org/10.1111/faf.12152

Kaya, E., Saritas, I., & Tasdemir, S. (2017). Classification of three different fish species by artificial neural networks using shape, color and texture properties. 7th International Conference on Advanced Technologies.

Knausgård, K. M., Wiklund, A., Sørdalen, T. K., Halvorsen, K. T., Kleiven, A. R., Jiao, L., & Goodwin, M. (2022). Temperate fish detection and classification: A deep learning based approach. Applied Intelligence, 1–14.

Kunjulakshmi, S., Harikrishnan, S., Murali, S., D’Silva, J. M., Binsi, P. K., Murugadas, V., Alfiya, P. V., Delfiya, D. A., & Samuel, M. P. (2020). Development of portable, non-destructive freshness indicative sensor for Indian Mackerel (Rastrelliger kanagurta) stored under ice. Journal of Food Engineering, 287, 110132.

Lalabadi, H. M., Sadeghi, M., & Mireei, S. A. (2020). Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquacultural Engineering, 90, 102076.

Lanjewar, M. G., & Panchbhai, K. G. (2023). Enhancing Fish Freshness Prediction using NasNet-LSTM. Journal of Food Composition and Analysis, 105945.

Ou, L., Liu, B., Chen, X., He, Q., Qian, W., Li, W., Zou, L., Shi, Y., & Hou, Q. (2023). Automatic classification of the phenotype textures of three Thunnus species based on the machine learning SVM algorithm. Canadian Journal of Fisheries and Aquatic Sciences, 80(8), 1221–1236. https://doi.org/10.1139/cjfas-2022-0270

Parkes, G., Young, J. A., Walmsley, S. F., Abel, R., Harman, J., Horvat, P., Lem, A., MacFarlane, A., Mens, M., & Nolan, C. (2010). Behind the Signs—A Global Review of Fish Sustainability Information Schemes. Reviews in Fisheries Science, 18(4), 344–356. https://doi.org/10.1080/10641262.2010.516374

Rayan, M. A., Rahim, A., Rahman, M. A., Marjan, M. A., & Ali, U. M. E. (2021). Fish freshness classification using combined deep learning model. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), 1–5. https://ieeexplore.ieee.org/abstract/document/9528138/

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556.

Sweeney, T. E., Gaine, S. P., & Michos, E. D. (2023). Eicosapentaenoic acid vs. Docosahexaenoic acid for the prevention of cardiovascular disease. Current Opinion in Endocrinology, Diabetes, and Obesity, 30(2), 87–93. https://doi.org/10.1097/MED.0000000000000796

Türkoğlu, İ., & Arslan, A. (2002). Darbeli Radarlarda Hedef Sınıflama İçin Ar Modelinin Güç Spektrumu Ve Yapay Sinir Ağı Temelli Özellik Çıkarma Yöntemi. Politeknik Dergisi, 5(2), 121–128.

Yasin, E. T., Ozkan, I. A., & Koklu, M. (2023). Detection of fish freshness using artificial intelligence methods. European Food Research and Technology, 1–12.

Zhang, B., Ma, X.-T., Zheng, G.-G., Li, G., Rao, Q., & Wu, K.-F. (2003). Expression of IL-18 and its receptor in human leukemia cells. Leukemia Research, 27(9), 813–822.

Yayınlanmış

2024-02-26

Nasıl Atıf Yapılır

Kılıçarslan, S., Hız Çiçekliyurt, M. M., & Kılıçarslan, S. (2024). Fish Freshness Detection Through Artificial Intelligence Approaches: A Comprehensive Study. Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 12(2), 290–295. https://doi.org/10.24925/turjaf.v12i2.290-295.6670

Sayı

Bölüm

Araştırma Makalesi