Genomic Analysis Methods of Microorganisms

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v13i1.237-243.7011

Anahtar Kelimeler:

Bacteria- identification- molecular method

Özet

Molecular approaches used to identify bacterial species use 16S rRNA and MLST to determine the genetic linkage of bacteria; MLST characterizes clonal linkages by examining differences in various gene loci. MLVA determines the genetic relationships of bacterial strains and biovar-level differences and assesses the copy number of repeated DNA sequences. Sequencing provides genetic data by identifying DNA sequences; Sanger sequencing is the basis for next-generation approaches. CRISPR modifies the genetic code and can correct mutations or control genes using Cas9. These methods are important for identifying bacterial species and annotating genomic information. The methods used for this purpose are brought together in this study. The explanation and detailed description of the methods examined will contribute to their use in the field of microbiology.

Referanslar

Amanda, J. B., & Robert, A. H. (2019). The role of genetic testing in dyslipidaemia. Pathology, 51(2), 184-192. https://doi.org/https://doi.org/10.1016/j.pathol.2018.10.014

Analara, Larissa Alves, B., Diego, & João Augusto, O.-J. (2023). Thalassemia: Molecular Bases, Recent Advances in Diagnosis and Treatment Challenges. In Reference Module in Biomedical Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-15717-2.00043-3

Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses, 6(1), 106-136. https://www.mdpi.com/1999-4915/6/1/106

Belkum, A. v., Scherer, S., Leeuwen, W. v., Willemse, D., Alphen, L. v., & Verbrugh, H. (1997). Variable number of tandem repeats in clinical strains of Haemophilus influenzae. Infection and Immunity, 65(12), 5017-5027. https://doi.org/doi:10.1128/iai.65.12.5017-5027.1997

Blanchard, A. M., Jolley, K. A., Maiden, M. C. J., Coffey, T. J., Maboni, G., Staley, C. E., Bollard, N. J., Warry, A., Emes, R. D., Davies, P. L., & Tötemeyer, S. (2018). The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus. Front Microbiol, 9, 551. https://doi.org/10.3389/fmicb.2018.00551

Dorado, G., Gálvez, S., Budak, H., Unver, T., & Hernández Molina, P. (2019). Nucleic-acid sequencing.

Dubbink, H. J., Deans, Z. C., Tops, B. B., van Kemenade, F. J., Koljenović, S., van Krieken, H. J., Blokx, W. A., Dinjens, W. N., & Groenen, P. J. (2014). Next generation diagnostic molecular pathology: critical appraisal of quality assurance in Europe. Molecular Oncology, 8(4), 830-839.

Feijao, P., Yao, H. T., Fornika, D., Gardy, J., Hsiao, W., Chauve, C., & Chindelevitch, L. (2018). MentaLiST - A fast MLST caller for large MLST schemes. Microb Genom, 4(2). https://doi.org/10.1099/mgen.0.000146

Fridman, H., Bormans, C., Einhorn, M., Au, D., Bormans, A., Porat, Y., Sanchez, L. F., Manning, B., Levy-Lahad, E., & Behar, D. M. (2021). Performance comparison: exome sequencing as a single test replacing Sanger sequencing. Molecular Genetics and Genomics, 296(3), 653-663. https://doi.org/10.1007/s00438-021-01772-3

Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S., & Biondo, C. (2022). Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens, 11(6). https://doi.org/10.3390/pathogens11060663

Gonzalez-Escalona, N., Jolley, K. A., Reed, E., & Martinez-Urtaza, J. (2017). Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus. J Clin Microbiol, 55(6), 1682-1697. https://doi.org/10.1128/jcm.00227-17

Hale, C. R., Majumdar, S., Elmore, J., Pfister, N., Compton, M., Olson, S., Resch, A. M., Glover, C. V., Graveley, B. R., & Terns, R. M. (2012). Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Molecular cell, 45(3), 292-302.

Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, 107(1), 1-8.

Horodecka, K., & Düchler, M. (2021). CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. International Journal of Molecular Sciences, 22(11), 6072. https://www.mdpi.com/1422-0067/22/11/6072

Ibarz Pavón, A. B., & Maiden, M. C. J. (2009). Multilocus sequence typing. Methods in molecular biology (Clifton, N.J.), 551, 129-140. https://doi.org/10.1007/978-1-60327-999-4_11

Jansen, R., Embden, J. D. v., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.

Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res, 3, 124. https://doi.org/10.12688/wellcomeopenres.14826.1

Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., & Dai, Y. (2023). Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep, 27(5). https://doi.org/10.3892/mmr.2023.12991

Liu, Y. Y., & Chen, C. C. (2021). A machine learning-based typing scheme refinement for Listeria monocytogenes core genome multilocus sequence typing with high discriminatory power for common source outbreak tracking. PLoS One, 16(11), e0260293. https://doi.org/10.1371/journal.pone.0260293

Maiden, M. C., Van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, 11(10), 728-736.

Maiden, M. C. J., van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, 11(10), 728-736. https://doi.org/10.1038/nrmicro3093

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6), 467-477. https://doi.org/10.1038/nrmicro2577

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467-477. https://doi.org/10.1038/nrmicro2577

Mardis, E. R. (2013). Next-generation sequencing platforms. Annual review of analytical chemistry, 6, 287-303.

Matthews, B. J., & Vosshall, L. B. (2020). How to turn an organism into a model organism in 10 ‘easy’ steps. Journal of Experimental Biology, 223(Suppl_1). https://doi.org/10.1242/jeb.218198

Mirkalantari, S., Masjedian, F., & Fateme, A. (2021). Determination of investigation of the link between human and animal Brucella isolates in Iran using multiple-locus variable number tandem repeat method comprising 16 loci (MLVA-16). Brazilian Journal of Infectious Diseases, 25(1), 101043.

Pelerito, A., Nunes, A., Grilo, T., Isidro, J., Silva, C., Ferreira, A. C., Valdezate, S., Núncio, M. S., Georgi, E., & Gomes, J. P. (2021). Genetic Characterization of Brucella spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles. Front Microbiol, 12, 740068. https://doi.org/10.3389/fmicb.2021.740068

Pontieri, E. (2016). Bacillus cereus Group Diagnostics: Chromogenic Media and Molecular Tools. In The Diverse Faces of Bacillus Cereus . Elsevier. https://doi.org/10.1016/B978-0-12-801474-5.00002-5.

Robert Thomas, W. (2021). Update on cytology samples for the use of molecular pathology and other ancillary tests in the move towards next-generation sequencing. Diagnostic Histopathology, 27(11), 459-466. https://doi.org/https://doi.org/10.1016/j.mpdhp.2021.08.005

Savaş, S. (2020). Staphylococcus aureus izolatlarının tiplendirilmesinde çoklu lokus değişken sayı tekrar analizi (MLVA) ve darbeli alan jel elektroforez (PFGE) yöntemlerinin karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 679-686.

Simar, S. R., Hanson, B. M., & Arias, C. A. (2021). Techniques in bacterial strain typing: past, present, and future. Current opinion in Infectious Diseases, 34(4), 339-345.

Stoikov, I., Ivanov, I., & Sabtcheva, S. (2020). In Silico Development Of High-Resolution Mlva Typing Scheme For Enterococcus Faecium. Problems of Infectious and Parasitic Diseases, 48(1), 5-14.

Taishan, H., Nilesh, C., Dimitri, M., & Anh, D. (2021). Next-generation sequencing technologies: An overview. Human Immunology, 82(11), 801-811. https://doi.org/https://doi.org/10.1016/j.humimm.2021.02.012

Whatmore, A. M., Perrett, L. L., & MacMillan, A. P. (2007). Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC microbiology, 7(1), 1-15.

Zhang, S., Li, X., Wu, J., Coin, L., O’Brien, J., Hai, F., & Jiang, G. (2021). Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. Water, 13(24), 3551. https://www.mdpi.com/2073-4441/13/24/3551

Yayınlanmış

2025-01-18

Nasıl Atıf Yapılır

Kebabçıoğlu, C., & Erganiş, O. (2025). Genomic Analysis Methods of Microorganisms. Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 13(1), 237–243. https://doi.org/10.24925/turjaf.v13i1.237-243.7011

Sayı

Bölüm

Derleme Makale