Effects of Spirulina and Chlorella Used as Protein Source on Growth and Digestion Enzymes of Common Carp (Cyprinus carpio, L., 1758)

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i3.787-793.7254

Keywords:

Apparent digestibility, Chlorella, Common carp (Cyprinus carpio), Digestive enzyme, Growth, Spirulina

Abstract

This study was conducted to determine the effects of using Spirulina and Chlorella instead of fish meal on the growth, feed utilization, digestibility and digestive enzyme activity of common carp (Cyprinus carpio). For this purpose, 25% fish meal was added to the control diet, 25% Spirulina to the SP diet and 25% Chlorella to the CL diet as the main protein source. In the 3×3 planned experiment, fish with an average weight of 1.98±0.10 g were fed with isonitrogenous and isolipidic formulated diets until satiation for 60 days. At the end of the experiment, higher final body weight and specific growth rate were obtained in the groups fed with diets containing Spirulina and Chlorella (p<0.05) and feed conversion was not affected by the main protein source in the diet. Lipid content in muscle tissue of fish fed with control diet was lower than that of the group fed with Chlorella containing diet (p<0.05). Microalgae addition to the diets significantly (p<0.05) increased dry matter, protein and lipid digestibility, as well as protease and lipase activity. The results obtained showed that Spirulina or Chlorella in Cyprinus carpio diets increased growth, nutrient digestibility and activity of digestive enzymes, and therefore, based on these parameters examined, Spirulina and Chlorella could be used instead of the entire 25% fish meal in the diet.

References

Abdel-Tawwab, M., & Ahmad, M. H. (2009). Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquaculture and Research, 40(9), 1037-1046.

Abdel-Tawwab, M., Mousa, M. A. A., Mamoon, A., Abdelghany M. F., Abdel-Hamid, E. A. A., Abdel-Razel, N., Ali, F. S., Shady, S. H. H., & Gewida, A. G. A. (2022). Dietary Chlorella vulgaris modulates the performance, antioxidant capacity, innate immunity, and disease resistance capability of Nile tilapia fingerlings fed on plant-based diets. Anim. Feed Sci. Technol., 283, 115181. https://doi.org/10.1016/j.anifeedsci.2021.115181

Adel, M., Yeganeh, S., Dadar, M., Sakai, M., & Dawood, M. A. O. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immunology, 56, 436-444.

Ahmad, T., Shariff, M., Yusoff, F. Md., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12, 328-346. https://doi.org/10.1111/raq.12320

Alagawany, M., Taha, A. E., Noreldin, A., El-Tarabily, K. A. & Abd El-Hack, M. E. (2021). Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542, 736841.

Albaqami, N. M. (2025). Chlorella vulgaris as unconventional protein source in fish feed: A review. Aquaculture, 594, 741404. https://doi.org/10.1016/j.aquaculture.2024.741404

Al-Deriny, S. H., Dawood, M. A. O., Zaid, A. A. A., El-Tras, W. F., Paray, B.A., Van Doan, H., & Mohamed, R. A. (2020). The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 17, Article 100390.

AlMulhim, N. M., Virk, P., Abdelwarith, A. A. & AlKhulaifi, F. M. (2023). Effect of incorporation of Spirulina platensis into fish diets, on growth performance and biochemical composition of Nile Tilapia, Oreochromis niloticus. Egyptian Journal of Aquatic Research, 49, 537-541. https://doi.org/10.1016/j.ejar.2023.08.008

Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C. A. O., & Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol., 6(2), 00144. https://doi.org/10.15406/mojfpt.2018.06.00144

AOAC, (1995). Agriculture chemicals; contaminants, drugs. 16th edn. official methods of analysis of AOAC International vol. 1 AOAC International, Arlington, VA.

Asche, F. (2008). Farming the Sea. Marine Resource Economics, 23(4), 527-547.

Bin Dohaish, E., Al Dhahri, M., & Omar, H. (2018). Potential application of the blue-green alga (Spirulina platensis) as a supplement in the diet of Nile tilapia (Oreochromis niloticus). Applied Ecology and Environmental Research, 16(6), 7883-7902. http://dx.doi.org/10.15666/aeer/1606_78837902

Bligh, E. G. & Dyer, W. J., (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys., 37, 911–917. https://doi.org/10.1139/o59-099

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding author links open overlay panel. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Chen, W. J., Luo, L., Han, D. X., Long, F. P., Chi, Q. L., & Hu, Q. (2021). Effect of dietary supplementation with Chlorella sorokiniana meal on the growth performance, antioxidant status, and immune response of rainbow trout (Oncorhynchus mykiss). J. Appl. Phycol., 33, 3113-3122. https://doi.org/10.1007/s10811-021-02541-w

Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods, 62, 103545. https://doi.org/10.1016/j.jff.2019.103545

El-Sheekh, M., El-Shourbagy, I., Shalaby, S., & Hosny, S. (2014). Effect of feeding Arthrospira platensis (Spirulina) on growth and carcass composition of hybrid red tilapia (Oreochromis niloticus x Oreochromis mossambicus). Turkish Journal of Fisheries and Aquaculture Sciences, 14, 471-478. https://doi.org/10.4194/1303-2712-v14_2_18

El-Sheekh, M. M., Rashad, S., & El-Chaghaby, G. A. (2023). The blue-green microalga (Spirulina) in the fishery: A mini review. Egyptian Journal of Aquatic Biology & Fisheries, 27(4), 49-61.

Francis, G., Makkar, H. P. S., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227. https://doi.org/10.1016/S0044-8486(01)00526-9

Furukawa, A., & Tsukahara, H. (1966). On the acid digestion method for determination of chromic oxide as an index substances in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish., 32, 502-506.

Galal, A. A. A., Reda, R. M., & Mohamed, A. A. R. (2018). Influences of Chlorella vulgaris dietary supplementation on growth performance, hematology, immune response and disease resistance in Oreochromis niloticus exposed to sub-lethal concentrations of penoxsulam herbicide. Fish Shellfish Immunol., 77, 445-456. https://doi.org/10.1016/j.fsi.2018.04.011

Gouveia, L., Choubert, G., Pereira, N., Santinha, J., Empis, J., & Gomes, E. (2002). Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquaculture Research, 33, 987-993.

Güroy, B., Güroy, D., Bilen, S., Kenanoğlu, O. N., Şahin, I., Terzi, E., Karadal, O., & Mantoğlu, S. (2022). Effect of dietary Spirulina (Arthrospira platensis) on the growth performance, immune-related gene expression and resistance to Vibrio anguillarum in European seabass (Dicentrarchus labrax) Aquaculture Research., 53, 2263-2274. https://doi.org/10.1111/are.15745

Hassaan, M. S., Mohammady, E. Y., Soaudy, M. R., Sabae, S. A., Mahmoud, A. M. A. & El-Haroun, E. R. (2021). Comparative study on the effect of dietary β-carotene and phycocyanin extracted from Spirulina platensis on immune-oxidative stress biomarkers, genes expression and intestinal enzymes, serum biochemical in Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 108, 63-72. https://doi.org/10.1016/j.fsi.2020.11.012

Hidalgo, M., Urea, E. & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170, 267–283. https://doi.org/10.1016/S0044-8486(98)00413-X.

Huang, K., Liu, X., Ma, R., Wang, B., Ho, S.-H., Chen, J., & Xie, Y. (2024). Effects of substituting fish meal with Chlorella meal on growth performance, whole-body composition, pigmentation, and physiological health of marbled eel (Anguilla marmorata). Algal Research, 80, 103523. https://doi.org/10.1016/j.algal.2024.103523

James, R., Sampath, K., Thangarathinam, R., & Vasudevan, I. (2006). Effects of dietary Spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Israeli Journal of Aquaculture-Bamidgeh, 58(2), 97-104.

Karadal, O., Guroy, D., & Turkmen, G. (2017). Effects of feeding frequency and Spirulina on growth performance, skin coloration and seed production on kenyi cichlids (Maylandia lombardoi). Aquacult. Int. 25(1), 121-134.

Khani, M., Soltani, M., Mehrjan, M. S., Foroudi, F., & Ghaeni, M. (2017). The effects of Chlorella vulgaris supplementation on growth performance, blood characteristics, and digestive enzymes in Koi (Cyprinus carpio). Iran. J. Fish. Sci., 16, 832-843.

Kim, S.-S., Rahimnejad, S., Kim, K. W., & Lee, K. J. (2013). Partial re-placement of fish meal with Spirulina pacifica in diets for parrotfish (Oplegnathus fasciatus). Turkish Journal of Fisheries and AquaticSciences, 13, 197-204.

Kim, S. P., Zou, T., Zhang, P. Y., Han, D., Jin, J. Y., Liu, H. K., Yang, Y. X., Zhu, X. M., & Xie, S. Q. (2018). Effects of dietary fishmeal replacement with Spirulina platensis on the growth, feed utilization, digestion and physiological parameters in juvenile gibel carp (Carassis auratus gibelio var. CAS III). Aquaculture Research, 49, 1320-1328. https://doi.org/10.1111/are.13590

Kokou, F., & Fountoulaki, E. (2018). Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture, 495, 295-310 https://doi.org/10.1016/j.aquaculture.2018.06.003

Krogdahl, A., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res., 41, 333-344.

Kusmayadi, A., Leong, Y. K., Yen, H.-W., Huang, C. Y. & Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans – biotechnological and environmental aspects. Chemosphere, 271, 129800.

Liu, J., & Chen, F. (2014). Biology and ındustrial applications of Chlorella: Advances and prospects. Adv. Biochem. Eng. Biotechnol, 153, 1-35. https://doi.org/ 10.1007/10_2014_286

Liu, C., Liua, H., Xua, W., Han, D., Xi, S., Jina, J., Yanga, Y., & Zhu, X. (2019). Effects of dietary Arthrospira platensis supplementation on the growth, pigmentation, and antioxidation in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 510, 267-275.

Man, Y. B., Zhang, F., Ma, K. L., Mo, W., Kwan, H. S., Chow, K. L., Man, K. Y., Tsang, Y. F., Li, W. C., & Wong, M. H. (2020). Growth and intestinal microbiota of Sabah giant grouper reared on food waste-based pellets supplemented with Spirulina as a growth promoter and alternative protein source. Aquaculture Reports, 18, 100553. https://doi.org/10.1016/j.aqrep.2020.100553

Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Eng. Life Sci., 15, 160-176. https://doi.org/10.1002/elsc.201400191

Mohammadiazarm, H., Maniat, M., Ghorbanijezeh, K., & Ghotbeddin, N. (2021). Effects o Spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: Assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquaculture Nutrition, 27(1), 252-260.

Morita, K., Matsueda, T., Iida, T., & Hasegawa, T. (1999). Chlorella accelerates dioxin excretion in rats. Nutrient Interactions and Toxicity, 129(9), 1731-1736.

Quico, C. A., Astocondor, M. M., & Ortega, R. A. (2021). Dietary supplementation with Chlorella peruviana improve the growth and innate immune response of rainbow trout Oncorhynchus mykiss fingerlings. Aquaculture, 533, 736117. https://doi.org/10.1016/j.aquaculture.2020.736117

Raji, A. A., Alaba, P. A., Yusuf, H., Bakar, N. H. A., Taufek, N. M., Muin, H., & Razak, S. A. (2018). Fishmeal replacement with Spirulina platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Res. Vet. Sci. 119, 67-75. https://doi.org/10.1016/j. rvsc.2018.05.013

Raji, A. A., Junaid, Q. O., Oke, M. A., Taufek, N. H. M., Muin, H., Bakar, N. H. A., & Razak, S. A., (2019). Dietary Spirulina platensis and Chlorella vulgaris effects on survival and haemato-immunological responses of Clarias gariepinus juveniles to Aeromonas hydrophila infection. Aquacult. Aquar. Conserv. Legisl., 12(5), 1559-1577.

Raji, A. A. Jimoh, W. A., Abu Bakar, N. H., Mohd Taufek, N. H., Muin, H., Alias, Z., Milow, P., & Abdul Razak, S. (2020). Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish. Journal of Applied Phycology, 32, 1763-1770. https://doi.org/10.1007/s10811-020-02070-y

Rahimnejad, S., Lee, S. M., Park, H. G., & Choi, J. (2017). Effects of dietary inclusion of Chlorella vulgaris on growth, blood biochemical parameters, and antioxidant enzyme activity in olive flounder, Paralichthys olivaceus: Dietary Chlorella meal for olive flounder. J. World Aquacult. Soc., 48(1), 103-112. https://doi.org/10.1111/ jwas.12320

Ravardshiri, M., Bahram, S., Javadian, S. R., & Bahrekazemi, M. (2021). Cinnamon promotes growth performance, digestive enzyme, blood parameters, and antioxidant activity of rainbow trout (Oncorhynchus mykiss) in low-carbohydrate diets. Turkish Journal of Fisheries and Aquatic Sciences, 21(7), 309-322. http://doi.org/10.4194/1303-2712-v21_7_01

Roohani, A. M., Abedian Kenari, A., Fallahi Kapoorchali, M., Borani, M. S., Zoriezahra, S. J., Smiley, A. H., Esmaeili, N., & Rombenso, A. N. (2019). Effect of Spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquaculture Nutrition, 25, 633-645. https://doi.org/10.1111/anu.12885

Saide, A., Martínez, K. A., Ianora, A., & Lauritano, C. (2021). Unlocking the health potential of microalgae as sustainable sources of bioactive compounds. Int. J. Mol. Sci., 22, 4383. https://doi.org/10.3390/ ijms22094383

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26, 709-722.

Sehgal, H. S., Sehgal, G. K., & Dhawan, J. (2022). Dietary supplementation of Spirulina platensis enhances body colouration of shubunkin gold fish, Carassius auratus (Linn.) even in high-alkalinity rearing water. J. Appl. Ichthyol., 38, 223-231. https://doi.org/10.1111/jai.14288

Sergejevova, M., & Masojídek, J. (2013). Chlorella biomass as feed supplement for freshwater fish: Sterlet, Acipenser ruthenus. Aquac. Res., 44, 157-159.

Shi, X., Chen, F., Chen, G.-H., Pan, Y.-X., Zhu, X.-M., Liu, X., & Luo, Z. (2017a). Fishmeal can be totally replaced by a mixture of rapeseed meal and Chlorella meal in diets for crucian carp (Carassius auratus gibelio). Aquac. Res., 48, 5481-5489. https://doi.org/10.1111/are.13364

Shi, X., Luo1, Z., Guang-Hui Chen, G.-H., Feng Chen, F., & Li-Han Zhang, L.-H. (2017b). Replacement of fishmeal by a mixture of soybean meal and Chlorella meal in practical diets for juvenile crucian carp, Carassius auratus. Journal of The World Aquaculture Society, 48, 770-781. https://doi.org/10.1111/jwas.12403

Shi, Y., Zhonga, L., Liua, Y., Zhenga, S., Xua, S., & Xie, S. (2025). Gossypol is the main limiting factor in the application of cottonseed meal in grass carp feed production: Involvement of growth, intestinal physical and immune barrier, and intestinal microbiota. Water Biology and Security, 3(4), 100287. https://doi.org/10.1016/j.watbs.2024.100287

Sotoudeh, E., & Esmaeili, M. (2022). Effects of Biotronic® Top3, a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex on growth, digestive enzyme activities, immunity, antioxidant system and gene expression of barramundi (Lates calcarifer). Aquaculture Reports, 24, 101152. https://doi.org/10.1016/j.aqrep.2022.101152

Teimouri, M., Amirkolaie, A. K., & Yeganeh, S. (2013). The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396-399: 14-19. http:// doi.org/10.1016/j.aquaculture.2013.02.009

Teimouri, M., Yeganeh, S., & Amirkolaie, A. K. (2016). The effects of Spirulina platensis meal on proximate composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss) muscle. Aquaculture Nutrition, 22, 559-566. https://doi.org/10.1111/anu.12281

Uzlasır, T., Selli, S., & Kelebek, H. (2023). Spirulina platensis ve Phaeodactylum tricornutum’un biyoaktif bileşikleri, sağlık üzerine etkileri ve gıda endüstrisinde kullanım alanları. ITU Journal of Food Science and Technology, 1(1), 15-26.

Velasquez, S. F., Chan, M. A., Abisado, R. G., Traifalgar, R. F. M., Tayamen, M. M., Maliwat, G. C. F., & Ragaza, J. A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J. Appl. Phycol., 28, 1023-1030. https://doi.org/10.1007/s10811-015-0661-y

Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., Luque, R., & Zhao, M. (2018). Microalgae cultivation and metabolites production: A comprehensive review. Biofuels Bioprod. Biorefin., 12, 304-324. https://doi.org/10.1002/bbb.1864

Xi, L., Lu, Q., Liu, Y., Su, J., Chen, W., Gong, Y., Han, D., Yang, Y., Zhang, Z., Jin, J., Liu, H., Zhu, X., & Xie, S. (2022). Effects of fish meal replacement with Chlorella meal on growth performance, pigmentation, and liver health of largemouth bass (Micropterus salmoides). Animal Nutrition, 10, 26e40. https://doi.org/10.1016/j.aninu.2022.03.003

Xu, W., Gao, Z., Qi, Z., Qiu, M., Peng, J.-q., & Shao, R. (2014). Effect of dietary Chlorella on the growth performance and physiological parameters of Gibel carp, Carassius auratus gibelio. Turk. J. Fish. Aquat. Sci., 14, 53-57. https://doi.org/10.4194/1303-2712-v14_1_07

Yılmaz, S., Ergun, S., Çelik, E. S., & Yigit, M. (2018). Effects of dietary humic acid on growth performance, haemato‐immunological and physiological responses andresistance of rainbow trout, Oncorhynchus mykiss to Yersini ruckeri. Aquaculture Research, 49, 3338-3349. https://doi.org/10.1111/are.137983338

Yu, H., Liang, H., Ge, X., Zhu, J., Wang, Y., Ren, M., & Chen, X. (2022). Dietary Chlorella (Chlorella vulgaris) supplementation effectively improves body color, alleviates muscle inflammation and inhibits apoptosis in largemouth bass (Micropterus salmoides). Fish and Shellfish Immunology, 127, 140-147. https://doi.org/10.1016/j.fsi.2022.06.017

Yücetepe, A., & Özçelik, B. (2016). Bioactive peptides isolated from microalgae Spirulina platensis and their biofunctional activities. Akademik Gıda, 14(4), 412-417.

Zahran, E., & Risha, E. (2014). Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 41, 654-662.

Downloads

Published

14.03.2025

How to Cite

Harmantepe, B., & Yılmaz, E. (2025). Effects of Spirulina and Chlorella Used as Protein Source on Growth and Digestion Enzymes of Common Carp (Cyprinus carpio, L., 1758). Turkish Journal of Agriculture - Food Science and Technology, 13(3), 787–793. https://doi.org/10.24925/turjaf.v13i3.787-793.7254

Issue

Section

Research Paper