In silico analyses of miRNAs that Target Odorant Binding and Chemosensory Proteins in Bemisia tabaci

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v13i3.750-759.7334

Anahtar Kelimeler:

RNAi- tobacco- cotton- tomato- linen

Özet

The whitefly, Bemisia tabaci, damages various crops by releasing honeydew and spreading. Although farmers and pest control experts primarily rely on insecticides to manage whiteflies, the notable issue is their tendency to develop resistance to major insecticide categories, posing a significant challenge. This result has led to the improvement of new drugs or insecticide mixtures. In addition, some plant-based studies have been conducted to control whiteflies, and RNA interference (RNAi) technology has been used in recent years. This study aimed to identify the relationships between tobacco, cotton, tomato, and linen miRNAs and odorant-binding protein (OBP) and chemosensory protein (CSP) genes in whiteflies by using in silico approaches. We determined that 115 miRNAs belonging to these plants targeted 13 CSP and 8 OBP genes of B. tabaci. Obtaining findings are important to reduce dependency on chemicals and pesticides in pest management.

Referanslar

Abd-Rabou, S. & Simmons, A. M. (2010). Survey of reproductive host plants of Bemisia tabaci (Hemiptera: Aleyrodidae) in Egypt, including new host records. Entomological News, 121(5), 456-465. doi: 10.3157/021.121.0507

Afonso-Grunz, F. & Müller, S. (2015). Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cellular and Molecular Life Sciences, 72, 3127-3141. doi: 10.1007/s00018-015-1922-2

Animasaun, D. A., Adedibu, P. A., Shkryl, Y., Emmanuel, F. O., Tekutyeva, L., & Balabanova, L. (2023). Modern plant biotechnology: an antidote against global food insecurity. Agronomy, 13(8), 2038. doi: 10.3390/agronomy13082038

Brown, J. K., Frohlich, D. E., & Rosell, R. C. (1995). The sweet potato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 40(1), 511-534. doi:10.1146/annurev.en.40.010195.002455

Burnett, T. (1949). The effect of temperature on an insect host-parasite population. Ecology, 30(2), 113-134. doi:10.2307/1931181

Chen, W., Hasegawa, D. K., Kaur, N., Kliot, A., Pinheiro, P. V., Luan, J., ... & Fei, Z. (2016). The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 14, 1-15. doi:10.1186/s12915-016-0321-y

Chen, W., Wosula, E. N., Hasegawa, D. K., Casinga, C., Shirima, R. R., Fiaboe, K. K. M., Hanna, R., Fosto, A., Goergen, G., Tamò, M., Mahuku, G., Murithi, H. M., Tripathi, L., Mware, B., Kumar, L. P., Ntawuruhunga, P., Moyo, C., Yomeni, M., Boahen, S., Edet, M., … & Fei, Z. (2019). Genome of the African cassava whitefly Bemisia tabaci and distribution and genetic diversity of cassava-colonizing whiteflies in Africa. Insect Biochemistry and Molecular Biology, 110, 112–120. doi:10.1016/j.ibmb.2019.05.003

Dong, Chu, Zhang, Y.-J., Brown, J. K., Cong, B., Xu, B.-Y., Wu, Q.-J., & Zhu, G.-R. (2006). The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. The Florida Entomologist, 89(2), 168–174. http://www.jstor.org/stable/4092462

Cloyd, R. A., Galle, C. L., Keith, S. R., Kalscheur, N. A., & Kemp, K. E. (2009). Effect of commercially available plant-derived essential oil products on arthropod pests. Journal of Economic Entomology, 102(4), 1567–1579. doi:10.1603/029.102.0422

Culliney, T. W. (2014). Crop losses to arthropods. Integrated Pest Management: Pesticide Problems, Vol. 3, 201-225. doi: :10.1007/978-94-007-7796-5_8

Czosnek, H., Hariton-Shalev, A., Sobol, I., Gorovits, R., & Ghanim, M. (2017). The incredible journey of begomoviruses in their whitefly vector. Viruses, 9(10), 273. doi:10.3390/v9100273

Dent, D. & Binks, R. H. (2020). Insect pest management. CABI.

Fan, Z., Zhang, Z., Zhang, X., Kong, X., Liu, F., & Zhang, S. (2022). Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis. Frontiers in Genetics, 13, 835324. doi: 10.3389/fgene.2022.835324

Faulkner, C. & Robatzek, S. (2012). Plants and pathogens: Putting infection strategies and defense mechanisms on the map. Current Opinion in Plant Biology, 15(6), 699–707. doi:10.1016/j.pbi.2012.08.009

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x

French, A., Ali, Agha, M., Mitra, A., Yanagawa, A., Sellier, M. J., & Marion-Poll, F. (2015). Drosophila bitter taste(s). Frontiers in Integrative Neuroscience, 9, 58. doi:10.3389/fnint.2015.00058

Friedman, R. C., Farh, K. K. H., Burge, C. B. & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome research, 19(1), 92-105. doi: 10.1101/gr.082701.108

Geley, S. & Müller, C. (2004). RNAi: Ancient mechanism with a promising future. Experimental Gerontology, 39(7), 985–998. doi: 10.1016/j.exger.2004.03.040

Gong, L., Luo, Q., Rizwan-ul-Haq, M., & Hu, M. Y. (2012). Cloning and characterization of three chemosensory proteins from Spodoptera exigua and effects of gene silencing on female survival and reproduction. Bulletin of entomological research, 102(5), 600-609. doi: 10.1017/S0007485312000168

Gong, P. P., Wei, X. G., Liu, S. N., Yang, J., Fu, B. L., Liang, J. J., ... & Zhang, Y. J. (2023). Novel_miR-1517 mediates CYP6CM1 to regulate imidacloprid resistance in Bemisia tabaci (Hemiptera: Gennadius). Pesticide Biochemistry and Physiology, 194, 105469. doi: 10.1016/j.pestbp.2023.105469

Götz, M. & Winter, S. (2016). Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement. Journal of Asia-Pacific Entomology, 19(2), 537-543. doi: 10.1016/j.aspen.2016.04.017

Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(Database issue), D140–D144. doi:10.1093/nar/gkj112

Honson, N. S., Gong, Y., & Plettner, E. (2005). Structure and function of insect odorant and pheromone-binding proteins (OBPs and PBPs) and chemosensory-specific proteins (CSPs). Recent Advances in Phytochemistry, 39(05), 227-268. doi: 10.1016/S0079-9920(05)80010-3.

Horowitz, A. R., Ghanim, M., Roditakis, E., Nauen, R., & Ishaaya, I. (2020). Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93(3), 893-910. doi:10.1007/s10340-020-01210-0

Huang,W., Reyes-Caldas, P., Mann,M., Seifbarghi, S., Kahn, A., Almeida, R. P. P., Béven, L., Heck, M., Hogenhout, S. A., & Coaker, G. (2020). Bacterial vector-borne plant diseases: Unanswered questions and future directions. Molecular Plant, 13(10), 1379–1393. doi:10.1016/j.molp.2020.08.01

Hunter, W. B. & Wintermantel,W. M. (2021). Optimizing efficient RNAi-mediated control of hemipteran pests (psyllids, leafhoppers, whitefly): Modified pyrimidines in dsRNA triggers. Plants (Basel, Switzerland), 10(9), 1782. doi:/10.3390/plants10091782

Ibrahim, A. B., Monteiro, T. R., Cabral, G. B., & Aragão, F. J. L. (2017). RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Research, 26(5), 613–624. doi:10.1007/s11248-017-0035-0

Inoue-Nagata, A. K., Lima, M. F. & Gilbertson, R. L. (2016). A review of geminivirus diseases in vegetables and other crops in Brazil: Current status and approaches for management. Horticultura Brasileira, 34(1), 8-18. doi:10.1590/s0102-053620160000100002

Jones, D. R. (2003). Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 109, 195-219. doi: 10.1023/A:1022846630513

Karanfil, A., Randa-Zelyüt, F. & Korkmaz, S. (2023). Population structure and genetic diversity of tobacco mild green mosaic virus variants in Western Anatolia of Turkey. Physiological and Molecular Plant Pathology, 125, 102008. doi: 10.1016/j.pmpp.2023.102008.

Kashyap, A., Planas-Marquès, M., Capellades, M., Valls, M. & Coll, N. S. (2021). Blocking intruders: Inducible physico-chemical barriers against plant vascular wilt pathogens. Journal of Experimental Botany, 72(2), 184–198. doi:10.1093/jxb/eraa444

Khan, I. A. & Wan, F. H. (2015). Life history of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. Journal of Entomology and Zoology Studies, 3(3), 117-121.

Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162. doi:10.1093/nar/gky1141

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549. doi: 10.1093/molbev/msy096

Leal, W. S. (2013). Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391. doi:10.1146/annurev-ento-120811-153635

Letunic, I. & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, gkae268. doi: 10.1093/nar/gkae268

Li, H., Zhang, A., Chen, L. Z., Zhang, G., & Wang, M. Q. (2014). Construction and analysis of cDNA libraries from the antennae of Batocera horsfieldi and expression pattern of putative odorant binding proteins. Journal of Insect Science (Online), 14, 57. doi:10.1093/jis/14.1.57

Liu, N. Y., Zhang, T., Ye, Z. F., Li, F. & Dong, S. L. (2015). Identification and characterization of candidate chemosensory gene families from Spodoptera exigua developmental transcriptomes. International Journal of Biological Sciences, 11(9), 1036–1048. doi:10.7150/ijbs.12020

Liu,Y., Gu, S., Zhang, Y., Guo, Y. & Wang, G. (2012). Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLOS ONE, 7(10), e48260. doi:10.1371/journal.pone.0048260

Lu, S., Chen, M., Li, J., Shi, Y., Gu, Q., & Yan, F. (2019). Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by cucurbit chlorotic yellows virus. Virology Journal, 16(1). doi:10.1186/s12985-019-1215-8

Lucas, J. A. (2011). Advances in plant disease and pest management. The Journal of Agricultural Science, 149(S1), 91-114. doi:10.1017/s0021859610000997

Luo Chen, L. C., Yao, Yuan Y. Y., Wang RongJiang, W. R., Yan FengMing ,Y. F., Hu DunXiao, H. D. & Zhang ZhiLi, Z. Z. (2002). The use of mitochondrial cytochrome oxidase I (mt CO I) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Kun chong xue bao. Acta entomologica Sinica, 45(6), 757-763. doi: 10.3390/insects13100861

Manoharan, M., Ng Fuk Chong, M., Vaïtinadapoulé, A., Frumence, E., Sowdhamini, R. & Offmann, B. (2013). Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome biology and evolution, 5(1), 163-180. doi: 10.1093/gbe/evs131

Marakli, S. (2020). In silico determination of transposon-derived miRNAs and targets in Aegilops species. Journal of Biomolecular Structure and Dynamics, 38(10), 3098–3109. doi: 10.1080/07391102.2019.1654409

McKenzie, S. K., Oxley, P. R. & Kronauer, D. J. (2014). Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC genomics, 15, 1-14. doi: 10.1186/1471-2164-15-718

Morin, S., Atkinson, P. W. & Walling, L. L. (2024). Whitefly–Plant Interactions: An Integrated Molecular Perspective. Annual Review of Entomology, 69(1), 503-525. doi: 10.1146/annurev-ento-120120-093940

Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248. doi:10.1146/annurev-phyto-072910-095235

Nei, M. & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford university press. doi: 10.1093/oso/9780195135848.001.0001

Pan, H., Li, X., Ge, D., Wang, S., Wu, Q., Xie, W., Jiao, X., Chu, D., Liu, B., Xu, B. & Zhang, Y. (2012). Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLOS ONE, 7(2), e30760. doi:10.1371/journal.pone.0030760

Pelosi, P., Zhou, J. J., Ban, L. P. & Calvello, M. (2006). Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 63(14), 1658–1676. doi:10.1007/s00018-005-5607-0

Pelosi, P., Iovinella, I., Felicioli, A. & Dani, F. R. (2014). Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology, 5, 320. doi:10.3389/fphys.2014.00320

Perring, T. M., Stansly, P. A., Liu, T. X., Smith, H. A. & Andreason, S. A. (2018). Whiteflies: biology, ecology, and management. In Sustainable management of arthropod pests of tomato (pp. 73-110). Academic Press. doi:10.1016/B978-0-12-802441-6.00004-8

Qiao, H., Tuccori, E., He, X., Gazzano, A., Field, L., Zhou, J. J. & Pelosi, P. (2009). Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochemistry and Molecular Biology, 39(5-6), 414–419. doi:10.1016/j.ibmb.2009.03.004

Quesada-Moraga, E. E. A. A., Maranhao, E. A. A., Valverde-García, P. & Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biological Control, 36(3), 274-287. doi:10.1016/j.biocontrol.2005.09.022

Randa-Zelyüt, F., Fox, A., & Karanfil, A. (2023). Population genetic dynamics of southern tomato virus from Turkey. Journal of Plant Pathology, 105(1), 211-224. doi: 10.1007/s42161-022-01263-3

Razze, J. M., Liburd, O. E., Nuessly, G. S. & Samuel-Foo, M. (2016). Evaluation of bioinsecticides for management of Bemisia tabaci (Hemiptera: Aleyrodidae) and the effect on the whitefly predator Delphastus catalinae (Coleoptera: Coccinellidae) in organic squash. Journal of Economic Entomology, 109(4), 1766–1771. doi:10.1093/jee/tow108

Rebijith, K. B., Asokan, R., Hande, H. R., Kumar, N. K., Krishna, V., Vinutha, J. & Bakthavatsalam, N. (2016). RNA interference of odorant-binding protein 2 (OBP2) of the cotton aphid, Aphis gossypii (Glover), resulted in altered electrophysiological responses. Applied Biochemistry and Biotechnology, 178(2), 251–266. doi:10.1007/s12010-015-1869-7

Rodríguez, E., Téllez, M. M. & Janssen, D. (2019). Whitefly control strategies against tomato leaf curl New Delhi virus in greenhouse zucchini. International Journal of Environmental Research and Public Health, 16(15), 2673. doi:10.3390/ijerph16152673

Saitou, N, Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425

Shejulpatil, S. J., Kakad, M. N. & Lande, G. K. (2019). Effect of insecticides against whitefly on brinjal under field condition. International Journal of Chemical Studies, 7, 1100-1103.

Shen, X., Guo, J., Wan, F., Lü, Z., Guo, J. & Liu, W. (2024). Characterization and functions of temperature stress-associated microRNAs in invasive insect Bemisia tabaci Mediterranean cryptic species. Journal of Integrative Agriculture. doi:10.1016/j.jia.2024.09.021

Simmons, A. M. & Abd-Rabou, S. (2005). Incidence of parasitism of Bemisia tabaci (Homoptera: Aleyrodidae) in three vegetable crops after application of biorational insecticides.

Simmons, A. M. & Jackson, D. M. (2000). Evaluation of foliar-applied insecticides on abundance of parasitoids of Bemisia argentifolii (Homoptera: Aleyrodidae) in vegetables. Journal of Entomological Science, 35(1), 1-8. doi:10.18474/0749-8004-35.1.1

Simmons, A. M., & Shaaban, A. R. (2011). Populations of predators and parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae) after the application of eight biorational insecticides in vegetable crops. Pest Management Science, 67(8), 1023–1028. doi:10.1002/ps.2155

Solanki, R. D. & Jha, S. (2018). Population dynamics and biology of whitefly (Bemisia tabaci Gennadius) on sunflower (Helianthus annuus L.). Journal of Pharmacognosy and Phytochemistry, 7(1S), 3055-3058.

Stansly, P. A. & Naranjo, S. E. (Eds.). (2010). Bemisia: Bionomics and management of a global pest. Springer Science & Business Media.

Sun, Y. F., De Biasio, F., Qiao, H. L., Iovinella, I., Yang, S. X., Ling, Y., ... &Pelosi, P. (2012). Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-ß-farnesene and structural analogues. PloS One, 7(3), e32759. doi:10.1371/journal.pone.0032759

Tunstall, N. E. & Warr, C. G. (2012). Chemical communication in insects: the peripheral odour coding system of Drosophila melanogaster. Advances in Experimental Medicine and Biology, 739, 59–77. doi:10.1007/978-1-4614-1704-0_4

Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. (2022). Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 20(8), 449–464. doi:10.1038/s41579-022-00710-3

Wang, R., Hu, Y., Wei, P., Qu, C. & Luo, C. (2020). Molecular and functional characterization of one odorant-binding protein gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of economic entomology, 113(1), 299-305. doi: 10.1093/jee/toz248

Waris, M. I., Younas, A., Ul Qamar, M. T., Hao, L., Ameen, A., Ali, S., Abdelnabby, H. E., Zeng, F. F. & Wang, M. Q. (2018). Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Nilaparvata lugens. Frontiers in Physiology, 9, 379. doi:10.3389/fphys.2018.00379

Xie, W., Chen, C., Yang, Z., Guo, L., Yang, X., Wang, D., Chen, M., Huang, J., Wen, Y., Zeng, Y., Liu, Y., Xia, J., Tian, L., Cui, H., Wu, Q., Wang, S., Xu, B., Li, X., Tan, X., Ghanim, M., … & Zhang, Y. (2017). Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. GigaScience, 6(5), 1–7. doi:10.1093/gigascience/gix018

Zhou, J. J. (2010). Odorant-binding proteins in insects. Vitamins and Hormones, 83, 241–272. doi:10.1016/S0083-6729(10)83010-9

Zhou, X. H., Ban, L. P., Iovinella, I., Zhao, L. J., Gao, Q., Felicioli, A., Sagona, S., Pieraccini, G., Pelosi, P., Zhang, L. & Dani, F. R. (2013). Diversity, abundance, and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis. Biological Chemistry, 394(1), 43–54. doi:10.1515/hsz-2012-0114

Zubair, M., Khan, M. Z., Rauf, I., Raza, A., Shah, A. H., Hassan, I. & Mansoor, S. (2020). Artificial micro RNA (amiRNA)-mediated resistance against whitefly (Bemisia tabaci) targeting three genes. Crop Protection, 137, 105308. doi: 10.1016/j.cropro.2020.105308

Yayınlanmış

2025-03-14

Nasıl Atıf Yapılır

Bal, M., & Maraklı, S. (2025). In silico analyses of miRNAs that Target Odorant Binding and Chemosensory Proteins in Bemisia tabaci. Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 13(3), 750–759. https://doi.org/10.24925/turjaf.v13i3.750-759.7334

Sayı

Bölüm

Araştırma Makalesi