Foliar Application of Folic Acid on Cabbage Seedlings Grown under Restricted Irrigation Conditions Can Alleviate the Negative Effects
DOI:
https://doi.org/10.24925/turjaf.v13i3.760-765.7453Anahtar Kelimeler:
Brassica oleracae- Folic acid- Restricted irrigation- Plant growth properties- LRWC- ECÖzet
Drought, a critical abiotic stress worsened by climate change, poses a substantial threat to crop production and global food security. White cabbage is classified as a moderately drought-sensitive crop. The function of folic acid, otherwise known as folate, in the plant's response to drought conditions is not yet fully understood. The aim of the study was to evaluate the potential of folic acid in enhancing certain growth parameters and physiological traits of cabbage seedlings under limited irrigation conditions. In this investigation, the effects of FA as a foliar application at 0, 100, and 200 µM (FA0, FA1, and FA2, respectively) were examined on white cabbage seedlings grown under full-irrigation (I0) and restricted irrigation (I1), set to 50% of full capacity irrigation scheme (I0). Drought stress adversely affected the plant growth properties of cabbage seedlings, whereas FA treatments mitigated the adverse effects of drought stress on the plant growth properties of cabbage seedlings. Under restricted irrigation, plants treated with 100 µM FA (FA1) had higher plant height, stem diameter and leaf area, while plants treated with 200 µM FA (FA2) had higher plant dry weight and plant dry matter content. Plant fresh weight increased with FA treatments under restricted irrigation, but no significant difference was observed between doses. On the other hand, leaf relative water content (LRWC), which decreased under restricted irrigation conditions, increased with FA applications regardless of the dose, while electrical conductivity (EC), which increased under the same conditions, decreased with 100 µM FA (FA1) application. Leaf number, root fresh weight, root fresh weight, root dry weight, root dry matter content and chlorophyll value (SPAD) were not affected by FA treatments under both restricted and full irrigation conditions. In conclusion, foliar spray of folic acid in cabbage can be recommended as a potential application to alleviate drought stress.
Referanslar
Al-Elwany, O. A., Hemida, K. A., Abdel-Razek, M. A., El-Mageed, T. A. A., El-Saadony, M. T., AbuQamar, S. F., El-Tarabily, K. A & Taha, R. S. (2022). Impact of folic acid in modulating antioxidant activity, osmoprotectants, anatomical responses, and photosynthetic efficiency of Plectranthus amboinicus under salinity conditions. Frontiers in Plant Science, 13, 887091. https://doi.org/10.3389/fpls.2022.887091
Aljuaid, B. S., Mukherjee, S., Sayed, A. N., El-Gabry, Y. A. E. G., Omar, M. M., Mahmoud, S. F., Al-Qahtan0, S. M., Al-Harbi, N. A. Alzuaibr, F. M., Basahi, M. A., & Hamada, M. M. (2022). Folic acid reinforces maize tolerance to sodic-alkaline stress through modulation of growth, biochemical and molecular mechanisms. Life, 12(9), 1327. https://doi.org/10.3390/life12091327
Alsamadany, H., Mansour, H., Elkelish, A., & Ibrahim, M. F. (2022). Folic acid confers tolerance against salt stress-induced oxidative damages in snap beans through regulation growth, metabolites, antioxidant machinery and gene expression. Plants, 11(11), 1459. https://doi.org/10.3390/plants11111459
Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African journal of agricultural research, 6(9), 2026-2032. https://doi.org/10.5897/AJAR10.027
Bhargava, S., & Sawant, K. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant breeding, 132(1), 21-32. https://doi.org/10.1111/pbr.12004
Cui, S., Lv, X., Li, W., Li, Z., Liu, H., Gao, Y., & Huang, G. (2018). Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. Redox biology, 19, 81-91. https://doi.org/10.1016/j.redox.2018.08.005
Daliakopoulos, I. N., Panagea, I. S., Tsanis, I. K., Grillakis, M. G., Koutroulis, A. G., Hessel, R., Mayor, A. G., & Ritsema, C. J. (2017). Yield response of Mediterranean rangelands under a changing climate. Land Degradation & Development, 28(7), 1962-1972. https://doi.org/10.1002/ldr.2717
El-Metwally, M. İ., & Dawood, M. G. (2017). Weed management, folic acid and seaweed extract effects on Faba bean plants and associated weeds under sandy soil conditions. Agricultural Engineering International: CIGR Journal, 27-34.
Esfandiari, E., Enayati, W., Sabaghnia, N., & Janmohammadi, M. (2012). Effects of folic acid on seed germination properties and seedling growth of wheat. Albanian Journal of Agricultural Sciences, 11(3), 185.
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188. https://doi.org/10.1007/978-90-481-2666-8_12
Fathi, A., & Tari, D. 2016. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6. https://doi.org/10.3126/ijls.v10i1.14509
Gliszczyńska-Świgło, A. (2007). Folates as antioxidants. Food Chemistry, 101(4), 1480-1483. https://doi.org/10.1016/j.foodchem.2006.04.022
Gorelova, V., Ambach, L., Rébeillé, F., Stove, C., & Van Der Straeten, D. 2017. Folates in plants: research advances and progress in crop biofortification. Frontiers in chemistry, 5, 21. https://doi.org/10.3389/fchem.2017.00021
Ibrahim, M. F. M., Abd El-Gawad, H. G., & Bondok, A. M. (2015). Physiological impacts of potassium citrate and folic acid on growth, yield and some viral diseases of potato plants. Middle East J. Agric. Res, 4(3), 577-589.
Ibrahim, M. F. M., Ibrahim, H. A., & Abd El-Gawad, H. G. (2021). Folic acid as a protective agent in snap bean plants under water deficit conditions. The Journal of Horticultural Science and Biotechnology, 96(1), 94-109. https://doi.org/10.1080/14620316.2020.1793691
Jang, Y., Kim, J., Lee, J., Lee, S., Jung, H., & Park, G. H. (2024). Drought Tolerance Evaluation and Growth Response of Chinese Cabbage Seedlings to Water Deficit Treatment. Agronomy, 14(2), 279. https://doi.org/10.3390/agronomy14020279
Kaya, M. D., Ipek, A., & Öztürk, A. (2003). Effects of different soil salinity levels on germination and seedling growth of safflower Carthamus tinctorius L.. Turkish Journal of Agriculture and Forestry, 27(4), 221-227. https://doi.org/10.3906/tar-0301-4
Khan, M. T., Ahmed, S., & Shah, A. A. (2022). Regulatory role of folic acid in biomass production and physiological activities of Coriandrum sativum L. under irrigation regimes. International Journal of Phytoremediation, 24(10), 1025-1038. https://doi.org/10.1080/15226514.2021.1993785
Kilic, S., & Aca, H. T. (2016). Role of exogenous folic acid in alleviation of morphological and anatomical inhibition on salinity-induced stress in barley. Italian Journal of Agronomy, 11(4), 246-251. https://doi.org/10.4081/ija.2016.777
Leike, H. (1988). Cabbage Brassica oleracea var. capitata L.. In Crops II pp. 226-251. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-73520-2_11
Xu, C., & Leskovar, D. I., (2014). Growth, physiology and yield responses of cabbage to deficit irrigation. Hortic. Sci. 41, 138-146. https://doi.org/10.17221/208/2013-HORTSCI
Maggio, A., De Pascale, S., Ruggiero, C., & Barbieri, G. (2005). Physiological response of field-grown cabbage to salinity and drought stress. European Journal of Agronomy, 23(1), 57-67. https://doi.org/10.1016/j.eja.2004.09.004
Mohamed, N. E. M., & Naheif, E. (2013). Behaviour of wheat cv. Masr-1 plants to foliar application of some vitamins. Nat. Sci, 11(6), 1-5.
Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y. H., Li, L., & Li, W. J. (2024). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, 100319. https://doi.org/10.1016/j.stress.2023.100319
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in plant science, 5, 86. https://doi.org/10.3389/fpls.2014.00086
Pavlović, I., Petřík, I., Tarkowská, D., Lepeduš, H., Vujčić Bok, V., Radić Brkanac, S., Novák, O., & Salopek-Sondi, B. (2018). Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. International Journal of Molecular Sciences, 19(10), 2866. https://doi.org/10.3390/ijms19102866
Poudineh, Z., Moghadam, Z. G., & Mirshekari, S. (2015), January. Effects of humic acid and folic acid on sunflower under drought stress. Biological Forum – An International Journal, 7, 451-454.
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., & D’Odorico, P. (2020). Global agricultural economic water scarcity. Science Advances, 6(18), eaaz6031. https://doi.org/10.1126/sciadv.aaz6031
Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage Brassica oleracea var. capitata. Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016
Sahito, Z. A., Zehra, A., Yu, S., Chen, S., Arif, M. A. R., Raza, S. T., Lahori, A. H., Mwaheb, M. A., He, Z., & Yang, X. (2024). Folic acid supplementation improves seed germination, seedling growth and cadmium uptake in a mining ecotype of Solanum nigrum L. Environmental Technology & Innovation, 34, 103600. https://doi.org/10.1016/j.eti.2024.103600
Samancioğlu, A., Yıldırım, E., & Șahİn, Ü. (2016). Effect of seedlings development, some physiological and biochemical properties of cabbage seedlings grown at different irrigation levels of the plant growth promoting rhizobacteria application. Kahramanmaraş Sütçü İmam Univ. J. Nat. Sci., 19 (3), 332-338.
Sanchez-Reinoso, A. D., Ligarreto-Moreno, G. A., & Restrepo-Diaz, H. (2018). Physiological and biochemical responses of common bush bean to drought. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 393-401. https://doi.org/10.15835/nbha46210965
Seidel, S. J., Werisch, S., Schütze, N., & Laber, H. (2017). Impact of irrigation on plant growth and development of white cabbage. Agricultural Water Management, 187, 99-111. https://doi.org/10.1016/j.agwat.2017.03.011
Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R., & Yildirim, E. (2019). Growth, nutrient uptake and enzyme activity response of Lettuce Lactuca sativa L. to excess copper. Environmental Sustainability, 2, 67-73. https://doi.org/10.1007/s42398-019-00051-7
Shinde, N. A., Kawar, P. G., & Dalvi, S. G. (2024). Chitosan-Based Nanoconjugates: A Promising Solution for Enhancing Crop Drought-Stress Resilience and Sustainable Yield in the Face of Climate Change. Plant Nano Biology, 100059. https://doi.org/10.1016/j.plana.2024.100059
Stakhova, L. N., Stakhov, L. F., & Ladygin, V. G. (2000). Effects of exogenous folic acid on the yield and amino acid content of the seed of Pisum sativum L. and Hordeum vulgare L. Applied Biochemistry and Microbiology, 36, 85-89. https://doi.org/10.1007/BF02738142
Yildirim, E., Ekinci, M., & Turan, M. (2021a). Impact of biochar in mitigating the negative effect of drought stress on cabbage seedlings. Journal of Soil Science and Plant Nutrition, 21(3), 2297-2309. https://doi.org/10.1007/s42729-021-00522-z
Yildirim, E., Ekinci, M., Sahin, U., Ors, S., Turan, M., Demir, I., Dursun A., & Kotan, R. (2021b). Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere, 20, 100446. https://doi.org/10.1016/j.rhisph.2021.100446
Zhang, X., Lu, G., Long, W., Zou, X., Li, F., & Nishio, T. (2014). Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 641, 60-73. https://doi.org/10.1270/jsbbs.64.60
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.