The Effect of Different Grape Varieties and Adding Different Ratios of Mustard Seeds on the Phenolic Compounds, Antioxidant Capacity, and Bioaccessibility Values of Hardaliye under In Vitro Digestion
DOI:
https://doi.org/10.24925/turjaf.v12i2.259-267.6653Keywords:
Traditional food, Antioxidant capacity, Phenolic compound, Bioaccessibility, In vitro digestionAbstract
Hardaliye, grape-based fermented beverage, rich in antioxidant phenolic compounds. Bioaccessibility and antioxidant capacity of bioactive compounds in hardaliye, produced using varying amounts of mustard seeds (1%, 1.5%, and 2%) with Merlot and Papazkarası grape varieties, were evaluated under in vitro gastrointestinal digestion conditions. After digestion, Merlot and Papazkarası samples with 2% addition of mustard seed showed significantly higher total phenolic compounds (TPC) (358.48±14.73 and 89.01±2.42 mg GAE/L, respectively) compared to other samples (P<0.05). 2% mustard seed added Merlot samples resulted in the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cupric reducing antioxidant capacity (CUPRAC) values (19.06±3.91 and 9.96±1.83 mmol TEAC/L, respectively) which differed significantly from other samples (P<0.05). The Merlot sample with 2% addition of mustard seed showed significantly higher TPC, total flavonoid compounds (TFC), DPPH, and CUPRAC bioaccessibility values compared to other Merlot samples (P<0.05). For Papazkarası samples with 2% mustard seed addition, significant differences were observed only in terms of TPC and TFC bioaccessibility values (15.87±2.30% and 15.27±1.29%, respectively) compared to samples with 1% and 1.5% mustard seed addition (P<0.05). The study demonstrated that the bioaccessibility of bioactive compounds in hardaliye can vary depending on the grape variety and to some extent, the use of mustard seed. This suggests that the food matrix and interaction with other food matrices in the environment can affect the stability and bioavailability of bioactive compounds during simulated digestion.
References
Aksoy, A.S., Arici, M., & Yaman, M. (2022). The effect of hardaliye on reducing the formation of malondialdehyde during in vitro gastrointestinal digestion of meat products. Food Bioscience, 45, 101747. https://doi.org/10.1016/j.fbio.2021.101747.
Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17–24. https://doi.org/10.1016/j.lwt.2012.08.003.
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x.
Arici, M., & Coskun, F. (2001). Hardaliye: fermented grape juice as a traditional Turkish beverage. Food Microbiology, 18, 417-421.
Askin, B., & Atik, A. (2016). Color, phenolic composition, and antioxidant properties of hardaliye (fermented grape beverage) under different storage conditions. Turkish Journal of Agriculture and Forestry, 40(6), 803-812.
Bermudez-Soto, M. J., Tomás-Barberán, F. A., & García-Conesa, M. T. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102, 865–874. https://doi.org/10.1016/j.foodchem.2006.06.025
Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171. https://doi.org/10.1111/1541-4337.12052.
Cemeroğlu, B. (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, 34, 168-171.
Corona-Leo, L. S., Meza-Márquez, O. G., & Hernández-Martínez, D. M. (2021). Effect of in vitro digestion on phenolic compounds and antioxidant capacity of different apple (Malus domestica) varieties harvested in Mexico. Food Bioscience, 43, 101311. https://doi.org/10.1016/j.fbio.2021.101311
Coskun, F., Arıcı, M., Çelikyurt, G., & Gülcü, M. (2012). Farklı yöntemler kullanılarak üretilen hardaliyelerin bazı özelliklerinde depolama sonunda meydana gelen değişmeler. Journal of Tekirdağ Agricultural Faculty, 9(3), 62-67.
Coskun, F., Arıcı, M., Gülcü, M., Çelikyurt, G., & Mırık, M. (2018). Physicochemical, functional and microbiological properties of hardaliye beverages produced from different grapes and collected from different households. Journal of Agricultural Sciences, 24(2), 278-285.
Coskun, F., & Arıcı, M. (2011). Hardaliyenin bazı özellikleri üzerine farklı hardal tohumları ve üzüm çeşitleri kullanımının etkisi. Akademik Gıda, 9(3), 6-11.
Costa, J. R., Amorim, M., Vilas-Boas, A., Tonon, R. V., Cabral, L., Pastrana, L., & Pintado, M. (2019). Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food & Function, 10(4), 1856–1869. https://doi.org/10.1039/c8fo02534g
Da Silva Haas, I. C., Toaldo, I. M., Gomes, T. M., Luna, A. S., de Gois, J. S., & Bordignon-Luiz, M. T. (2018). Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, 22, 120-128. https://doi.org/10.1016/j.fbio.2018.11.002
Dani, C., Oliboni, L. S., Vanderlinde, R., Bonatto, D., Salvador, M., & Henriques, J. A. P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology, 45(12), 2574-2580. https://doi.org/10.1016/j.fct.2007.06.022
Diosady, L. L., Xu, L., & Chen, B. K. (2007). Production of high-quality protein isolates from oilseeds seeds. United States Patent Number 20070237877.
Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13), 1925–1941. https://doi.org/10.1002/10970010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-
Gündüz, G. T., Vurmaz, A. K., Solak, E., & Sözbir, H. D. (2019). Antimicrobial, antioxidant activities and total phenolic contents of the traditional Turkish beverages produced by using grapes. Turkish Journal of Agriculture - Food Science and Technology, 7(sp1), 119-125.
Ketnawa, S., Hamanaka, D., Wongpoomchai, R., Ogawa, Y., & Setha, S. (2021). Low intensity of high pressure processing increases extractable recovery of polyphenols and antioxidant activities of non-astringent persimmon fruit. LWT, 151, 112162. https://doi.org/10.1016/j.lwt.2021.112162
Kumaran, A., & Karunakaran, R. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109–114. https://doi.org/10.1016/j.foodchem.2005.03.028.
Lee, S. J., Lee, S. Y., Chung, M. S., & Hur, S. J. (2016). Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. Journal of Functional Foods, 22, 113–121.
Liu, X., Shi, J., Yi, J., Zhang, X., Ma, Q., & Cai, S. (2020). The effect of in vitro simulated gastrointestinal digestion on phenolic bioaccessibility and bioactivities of Prinsepia utilis Royle fruits. LWT, 110782. https://doi.org/10.1016/j.lwt.2020.110782
Mihaylova, D., Desseva, I., Stoyanova, M., Petkova, N., Terzyiska, M., & Lante, A. (2021). Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules, 26(4), 1187. https://doi.org/10.3390/molecules26041187
Milinčić, D. D., Stanisavljević, N. S., Kostić, A. Ž., Soković Bajić, S., Kojić, M. O., Gašić, U. M., Barać, M. B., Stanojević, S. P., Tešić, Ž. Lj., & Pešić, M. B. (2021). Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT, 138, 110739. https://doi.org/10.1016/j.lwt.2020.110739
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., ... Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food- an international consensus. Food and Function, 5, 1113–1124. https://doi.org/10.1039/C3FO60702J.
Moreno-Montoro, M., Olalla-Herrera, M., Gimenez-Martinez, R., Navarro-Alarcon, M., & Rufián-Henares, J. A. (2015). Phenolic compounds and antioxidant activity of Spanish commercial grape juices. Journal of Food Composition and Analysis, 38, 19–26. https://doi.org/10.1016/j.jfca.2014.10.001
Mulero, J., Pardo, F., & Zafrilla, P. (2010). Antioxidant activity and phenolic compounds in conventional and organic red grapes (var. Monastrell). CyTA - Journal of Food, 8(3), 185–191.
Ortega, N., Macià, A., Romero, M., Reguant, J., & Motilva, M. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124(1), 65–71.
Panceri, C. P., De Gois, J. S., Borges, D. L. G., & Bordignon-Luiz, M. T. (2015). Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines. LWT - Food Science and Technology, 63(1), 228–235. https://doi.org/10.1016/j.lwt.2015.02.014
Pinarli, B., Karliga, E. S., Ozkan, G., & Capanoglu, E. (2020). Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 13(1), 63-74. https://doi.org/10.3233/MNM-190362
Pinarli, B., Karliga, E. S., Ozkan, G., & Capanoglu, E. (2020). Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 13(1), 63-74. https://doi.org/10.3233/MNM-190362
Podsędek, A., Redzynia, M., Klewicka, E., & Koziołkiewicz, M. (2014). Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/365738
Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588–602.
Romero-Díez, R., Rodríguez-Rojo, S., Cocero, M. J., Duarte, C. M. M., Matias, A. A., & Bronze, M. R. (2018). Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food Chemistry, 259, 188–195. https://doi.org/10.1016/j.foodchem.2018.03.119
Sęczyk, L., Sugier, D., Swieca, M., & Gawlik-Dziki, U. (2021). The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chemistry, 344, 128581. https://doi.org/10.1016/j.foodchem.2020.128581.
Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Su, D. X., Luo, M. K., Liu, H. S., Qi, X. Y., Zeng, Q. Z., He, S., Fen, S., & Zhang, J. (2019). The effect of simulated digestion on the composition of phenolic compounds and antioxidant activities in lychee pulp of different cultivars. International Journal of Food Science & Technology, 54(11), 3042-3050. https://doi.org/10.1186/s13065-019-0544-4
Toaldo, I. M., de Gois, J. S., Fogolari, O., Hamann, D., Borges, D. L., & Bordignon-Luiz, M. T. (2014). Phytochemical polyphenol extraction and elemental composition of Vitis labrusca L. grape juices through optimization of pectinolytic activity. Food and Bioprocess Technology, 7(9), 2581-2594. https://doi.org/10.1007/s11947-014-1288-8.
Xie, X., Chen, C., & Fu, X. (2020). Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. Journal of Food Processing and Preservation, 00:e15056. https://doi.org/10.1111/jfpp.15056
Zhishen, J., Tang, M., & Wu, J. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2.
Zoubiri, L., Bakir, S., Barkat, M., Carrillo, C., & Capanoglu, E. (2019). Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. Journal of Berry Research, 1–16. https://doi.org/10.3233/JBR-190432
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.