Neuroprotective Efficacy of β-caryophyllene on Cerebellar Changes Caused by Bisphenol A in Rats via Alleviating Oxidative Stress
DOI:
https://doi.org/10.24925/turjaf.v12i10.1746-1752.7122Keywords:
β-caryophyllene, Bisphenol A, Cerebellum, Male rat, StereologyAbstract
Exposure to bisphenol A (BP), an environmental pollutant, is potentially harmful to both human health and the environment. The purpose of the current research was to evaluate the effectiveness of β-caryophyllene (CF) (200 mg/kg) on rat cerebellar tissues exposed to BP (250 mg/kg). Thirty-five randomly selected male rats were split into five groups as: control (CON), olive oil (OL), BP, CF, and CF+BP. On day 15 of the experiment, all rats' cerebellar tissues were immediately extracted, followed by stereological and histological examination. Our results revealed that MDA level was significantly elevated in the BP group compared to the CON group (p<0.05). While no significant difference was detected in the mean cerebellar volume among the experimental groups, the BP group’s the Purkinje cell number was significantly reduced when compared to the CON group (p<0.05). In the CF+BP group, we found a significantly lower level of MDA and higher number of Purkinje cells compared to the BP group (p<0.05). Histopathological examination revealed that the BP group had the marked neuronal deterioration; however, in the CF+BP group, this structural alteration was not as severe than the BP group. Our findings showed that exposure to BP caused oxidative damage to cerebellar tissues, and administration of CF attenuated BP-induced toxicity via improvement of oxidative stress.
References
Abdou, H. M., Abd Elkader, H. A. E., El-Gendy, A. H., & Eweda, S. M. (2022, Feb). Neurotoxicity and neuroinflammatory effects of bisphenol A in male rats: the neuroprotective role of grape seed proanthocyanidins. Environ Sci Pollut Res Int, 29(6), 9257-9268. https://doi.org/10.1007/s11356-021-16311-1
Al-Taee, H., Azimullah, S., Meeran, M. F. N., Alaraj Almheiri, M. K., Al Jasmi, R. A., Tariq, S., Ab Khan, M., Adeghate, E., & Ojha, S. (2019, Sep 5). beta-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study. Eur J Pharmacol, 858, 172467. https://doi.org/10.1016/j.ejphar.2019.172467
Amini, M. R., Sheikhhossein, F., Djafari, F., Jafari, A., Djafarian, K., & Shab-Bidar, S. (2023, Jun). Effects of chromium supplementation on oxidative stress biomarkers. Int J Vitam Nutr Res, 93(3), 241-251. https://doi.org/10.1024/0300-9831/a000706
Assis, L. C., Straliotto, M. R., Engel, D., Hort, M. A., Dutra, R. C., & de Bem, A. F. (2014, Oct 24). beta-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience, 279, 220-231. https://doi.org/10.1016/j.neuroscience.2014.08.043
Ayala, A., Munoz, M. F., & Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014, 360438. https://doi.org/10.1155/2014/360438
Balci, A., Ozkemahli, G., Erkekoglu, P., Zeybek, N. D., Yersal, N., & Kocer-Gumusel, B. (2020, Jun). Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. Environ Sci Pollut Res Int, 27(16), 20104-20116. https://doi.org/10.1007/s11356-020-08274-6
Chavez-Hurtado, P., Gonzalez-Castaneda, R. E., Beas-Zarate, C., Flores-Soto, M. E., & Viveros-Paredes, J. M. (2020, May). beta-Caryophyllene Reduces DNA Oxidation and the Overexpression of Glial Fibrillary Acidic Protein in the Prefrontal Cortex and Hippocampus of d-Galactose-Induced Aged BALB/c Mice. J Med Food, 23(5), 515-522. https://doi.org/10.1089/jmf.2019.0111
Cooper, B. L., & Posnack, N. G. (2022, Mar). Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol, 22(3), 273-280. https://doi.org/10.1007/s12012-022-09719-9
Costa, H. E., & Cairrao, E. (2024, Jan). Effect of bisphenol A on the neurological system: a review update. Arch Toxicol, 98(1), 1-73. https://doi.org/10.1007/s00204-023-03614-0
Deepika, & Maurya, P. K. (2022, Dec). Ellagic acid: insight into its protective effects in age-associated disorders. 3 Biotech, 12(12), 340. https://doi.org/10.1007/s13205-022-03409-7
Khan, J., Salhotra, S., Goswami, P., Akhter, J., Jahan, S., Gupta, S., Sharma, S., Banerjee, B. D., Parvez, S., Gupta, S., & Raisuddin, S. (2019, Dec 1). Bisphenol A triggers axonal injury and myelin degeneration with concomitant neurobehavioral toxicity in C57BL/6J male mice. Toxicology, 428, 152299. https://doi.org/10.1016/j.tox.2019.152299
Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Wang, R., Marwa, P. W., Petlulu, P., Chen, X., & Zhang, H. (2019, Sep). The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res, 176, 108575. https://doi.org/10.1016/j.envres.2019.108575
Machado, K. D. C., Islam, M. T., Ali, E. S., Rouf, R., Uddin, S. J., Dev, S., Shilpi, J. A., Shill, M. C., Reza, H. M., Das, A. K., Shaw, S., Mubarak, M. S., Mishra, S. K., & Melo-Cavalcante, A. A. C. (2018, Dec). A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother Res, 32(12), 2376-2388. https://doi.org/10.1002/ptr.6199
Maniradhan, M., & Calivarathan, L. (2023). Bisphenol A-Induced Endocrine Dysfunction and its Associated Metabolic Disorders. Endocr Metab Immune Disord Drug Targets, 23(4), 515-529. https://doi.org/10.2174/1871530322666220928144043
Mannino, F., Pallio, G., Corsaro, R., Minutoli, L., Altavilla, D., Vermiglio, G., Allegra, A., Eid, A. H., Bitto, A., Squadrito, F., & Irrera, N. (2021, Nov 16). Beta-Caryophyllene Exhibits Anti-Proliferative Effects through Apoptosis Induction and Cell Cycle Modulation in Multiple Myeloma Cells. Cancers (Basel), 13(22). https://doi.org/10.3390/cancers13225741
Miyatake, M., Miyagawa, K., Mizuo, K., Narita, M., & Suzuki, T. (2006, Jun). Dynamic changes in dopaminergic neurotransmission induced by a low concentration of bisphenol-A in neurones and astrocytes. J Neuroendocrinol, 18(6), 434-444. https://doi.org/10.1111/j.1365-2826.2006.01434.x
Naureen, Z., Dhuli, K., Medori, M. C., Caruso, P., Manganotti, P., Chiurazzi, P., & Bertelli, M. (2022, Jun). Dietary supplements in neurological diseases and brain aging. J Prev Med Hyg, 63(2 Suppl 3), E174-E188. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2759
Newbold, R. R., Jefferson, W. N., & Padilla-Banks, E. (2009, Jun). Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect, 117(6), 879-885. https://doi.org/10.1289/ehp.0800045
Pisoschi, A. M., & Pop, A. (2015, Jun 5). The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem, 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
Refaat, B., & El-Boshy, M. (2022, Apr). Protective antioxidative and anti-inflammatory actions of beta-caryophyllene against sulfasalazine-induced nephrotoxicity in rat. Exp Biol Med (Maywood), 247(8), 691-699. https://doi.org/10.1177/15353702211073804
Rubin, B. S. (2011, Oct). Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol, 127(1-2), 27-34. https://doi.org/10.1016/j.jsbmb.2011.05.002
Salim, S. (2017, Jan). Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther, 360(1), 201-205. https://doi.org/10.1124/jpet.116.237503
Sevastre-Berghian, A. C., Casandra, C., Gheban, D., Olteanu, D., Olanescu Vaida Voevod, M. C., Rogojan, L., Filip, G. A., & Baldea, I. (2022, Dec). Neurotoxicity of Bisphenol A and the Impact of Melatonin Administration on Oxidative Stress, ERK/NF-kB Signaling Pathway, and Behavior in Rats. Neurotox Res, 40(6), 1882-1894. https://doi.org/10.1007/s12640-022-00618-z
Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019, Apr 22). Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24(8). https://doi.org/10.3390/molecules24081583
Suresh, S., & Vellapandian, C. (2024). Restoring Impaired Neurogenesis and Alleviating Oxidative Stress by Cyanidin against Bisphenol A-induced Neurotoxicity: In Vivo and In Vitro Evidence. Curr Drug Discov Technol, 21(2), e250124226256. https://doi.org/10.2174/0115701638280481231228064532
Vanani, A. R., Mahdavinia, M., Shirani, M., Alizadeh, S., & Dehghani, M. A. (2020, May). Protective effects of quercetin against oxidative stress induced by bisphenol-A in rat cardiac mitochondria. Environ Sci Pollut Res Int, 27(13), 15093-15102. https://doi.org/10.1007/s11356-020-08048-0
Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007, Aug-Sep). Human exposure to bisphenol A (BPA). Reprod Toxicol, 24(2), 139-177. https://doi.org/10.1016/j.reprotox.2007.07.010
Wang, G., Ma, W., & Du, J. (2018, Jul). beta-Caryophyllene (BCP) ameliorates MPP+ induced cytotoxicity. Biomed Pharmacother, 103, 1086-1091. https://doi.org/10.1016/j.biopha.2018.03.168
Yahyazadeh, A. (2024a). Alteration of Sublingual Gland after Exposure to 6-Mercaptopurine in Male Rat: Potential Efficacy of Propolis. Meandros Medical And Dental Journal, 25(1), 12 - 18.
Yahyazadeh, A. (2024b, May 28). The effectiveness of hesperidin on bisphenol A-induced spinal cord toxicity in a diabetic rat model. Toxicon, 243, 107724. https://doi.org/10.1016/j.toxicon.2024.107724
Yoshioka, T., Kawada, K., Shimada, T., & Mori, M. (1979, Oct 1). Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol, 135(3), 372-376. https://doi.org/10.1016/0002-9378(79)90708-7
Zhang, Q., An, R., Tian, X., Yang, M., Li, M., Lou, J., Xu, L., & Dong, Z. (2017, May). beta-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway. Neurochem Res, 42(5), 1459-1469. https://doi.org/10.1007/s11064-017-2202-3
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.