Biostimulant Applications in Medicinal and Aromatic Plants: Advantages, Challenges and Future Perspectives
DOI:
https://doi.org/10.24925/turjaf.v12i11.1944-1952.7149Keywords:
Biostimulants, Abiotic stress, Agricultural sustainability, Medicinal and aromatic plants, Stress factorsAbstract
This review investigates the role of biostimulants in enhancing the abiotic stress tolerance of medicinal and aromatic plants. Biostimulants play a crucial role in promoting plant growth and increasing resistance to environmental stress conditions. The negative effects of abiotic stress types such as drought, salinity, temperature, and heavy metal stress on plants can be mitigated using these products. This review addresses various types of biostimulants, their effects on plant metabolism, and the outcomes of these applications on plant quality. The use of biostimulants in agriculture offers advantages such as the conservation of natural resources, improvement of soil health, and optimization of water usage. However, challenges such as the lack of standardization, insufficient knowledge and awareness, and regulatory processes limit the widespread use of these products. The review emphasizes the need for further research to enhance the effectiveness of biostimulants and develop new application strategies in the future. In conclusion, biostimulants are important tools with the potential to increase the productivity of medicinal and aromatic plants and should be considered as part of sustainable agricultural practices.
References
Abd-El-kader, E. H., Ali, A. F., & Tawfik, O. H. (2022). Growth and essential oil of peppermint (Mentha piperita L.) plants as influenced by compost and some biostimulants. Archives of Agriculture Sciences Journal, 5(1), 53-76.
Abdali, R., Rahimi, A., Siavash Moghaddam, S., Heydarzadeh, S., Arena, C., Vitale, E., & Zamanian, M. (2023). The role of stress modifier biostimulants on adaptive strategy of oregano plant for increasing productivity under water shortage. Plants, 12(24), 4117.
Abdelmajeed, N. A., Danial, E. N., & Ayad, H. S. (2013). The effect of environmental stress on qualitative and quantitative essential oil of aromatic and medicinal plants. Archives des sciences, 66(4), 100-120.
Abdollahi Arpanahi, A., Feizian, M., & Mehdipourian, G. (2019). Plant growth promoting rhizobacteria enhance oil content and physiological status of Thymus daenensis Celak. under drought stress. Journal of Medicinal Herbs, 9(4), 223-231.
Aftab, T., Choudhary, S., Naeem, M., Masroor, M., Khan, A., & Aftab, T. (2019). A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. Journal of Medicinal Plants, 7(3), 99-106.
Ahmad, R. A., & Rabea, K. M. (2022). Effect of mycorrhiza, cytokinin and organic fertilizer on the growth and yield of chamomile plant (Matricaria recutitia L). Indian Journal of Ecology, 49(20), 119-125.
Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of abscisic acid in the drought stress tolerance of plants. Agronomy, 10(9), 1323.
Alizadeh Salteh, S., Nasiri Kaleibar, A., Zaare-Nahandi, F., & Adlipour, M. (2023). Salicylic acid and fulvic acid foliar application influence the growth, some physiological re-sponses and essential oil content of Thymus vulgaris L. Journal of Agrıcultural Science and Sustainable Production, 32(4), 165-178.
Azad, M.O.K., Park, B.S., Adnan, M., Germ, M., Kreft, I., Woo, S.H., & Park, C.H. (2021). Silicon biostimulant enhances the growth characteristics and fortifies the bioactive compounds in common and tartary buckwheat plant. Journal of Crop Sciences Biotechnology, 24, 51–59.
Bashir, M. A., Rehim, A., Raza, Q. U. A., Raza, H. M. A., Zhai, L., Liu, H., & Wang, H. (2021). Biostimulants as plant growth stimulators in modernized agriculture and environmental sustainability. Technology in Agriculture, 311.
Bat, M., Tunçtürk, R., & Tunçtürk, M. (2019). Ekinezya (Echinacea purpurea L.) bitkisinde kuraklık stresi ve deniz yosunu uygulamalarının bazı fizyolojik parametreler üzerine etkisi. KSÜ Tarım ve Doğa Dergisi, 23(1): 99-107. DOI: 10.18016/ksutarimdoga.vi.535210.
Battacharyya, D., Babgohari, M.Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed Extracts as Biostimulants in Horticulture. Science Horticulture, 196, 39–48.
Bistgani, Z. E., Barker, A. V., & Hashemi, M. (2024). Physiology of medicinal and aromatic plants under drought stress. The Crop Journal, 12 (2), 330-339.
Bulgari, R., Morgutti, S., Cocetta, G., Negrini, N., Farris, S., Calcante, A., Spinardi, A., Ferrari, E., Mignani, I., & Oberti, R. (2017). Evaluation of borage extracts as potential biostimulant using a phenomic, agronomic, physiological, and biochemical approach. Frontie Plant Sciences,, 8, 935.
Caccialupi, G., Caradonia, F., Ben Hassine, M., Truzzi, E., Benvenuti, S., Ronga, D., & Francia, E. (2022). Use of biostimulants to increase biomass production in Lavandin (Lavandula x intermedia) cultivated in Tuscan-Emilian Apennines. In AISSA.
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27.
Caradonia, F., Battaglia, V., Righi, L., Pascali, G., & La Torre, A. (2019). Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. Journal of Plant Growth Regulation, 38, 438-448.
Cheng, C., Liu, Z., Zhou, Y., Wei, H., Zhang, X., Xia, M., & Peng, J. (2017). Effect of oregano essential oil supplementation to a reduced-protein, amino acid-supplemented diet on meat quality, fatty acid composition, and oxidative stability of Longissimus thoracis muscle in growing-finishing pigs. Meat science, 133, 103-109.
Chiappero, J., del Rosario Cappellari, L., Palermo, T. B., Giordano, W., Khan, N., & Banchio, E. (2021). Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Industrial Crops and Products, 167, 113541.
Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., Rouphael, Y. (2015a). Protein Hydrolysates as Biostimulants in Horticulture. Science Horticulture, 196, 28–38.
Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., Cardarelli, M. (2015b). Co-Inoculation of Glomus Intraradices and Trichoderma Atroviride Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. Journal of Scence Food Agriculture, 95, 1706–1715.
Delaeter, M., Magnin-Robert, M., Randoux, B., & Lounès-Hadj Sahraoui, A. (2024). Arbuscular mycorrhizal fungi as biostimulant and biocontrol agents: a review. Microorganisms, 12(7), 1281.
Dobrikova, A.G. 82023). Abiotic Stress Tolerance in Crop and Medicinal Plants. Plants. 2023; 12(24):4167. https://doi.org/10.3390/plants12244167
Fallah Hosseini, Z., Riahi, H., Ghorbani Nohooji, M., & Shariatmadari, Z. (2022). The Effect of Cyanobacterial Bioelicitors on Total Phenolic Content of Echinacea purpurea L. Journal of Phycological Research, 6(2), 914-922.
Farruggia, D., Di Miceli, G., Licata, M., Leto, C., Salamone, F., & Novak, J. (2024). Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage (Salvia officinalis L.). Frontiers in Plant Science, 15, 1397489.
Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, 8(3), 189.
Gorgini Shabankareh, H., Sabouri, F., Saedi, F., & Fakheri, B. A. (2017). Effects of different levels of humic acid on growth indices and essential oil of lemon balm (Melissa officinalis L.) under different irrigation regimes. Crop Science Research in Arid Regions, 1(2), 166-176.
Goudarzian, A., Pirbalouti, A. G., & Hossaynzadeh, M. (2020). Menthol, balance of menthol/menthone, and essential oil contents of Mentha× Piperita L. under foliar-applied chitosan and inoculation of arbuscular mycorrhizal fungi. Journal of Essential Oil Bearing Plants, 23(5), 1012-1021.
Kaboli Farshchi, H., Azizi, M., Nemati, S. H., & Rowshan, V. (2016). Effect of potassium sulphate and humic acid on growth, yield and essential oil content in Hypericum perforatum L. Journal of Horticultural Science, 29(4), 518-527.
Kapoore, R. V., Wood, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49, 107754.
Khosravi, F., Bahmanyar, M. A., & Akbarpour, V. (2023). Effect of different levels of humic acid and zinc sulfate on morphological and phytochemical traits of (Salvia officinalis L.). Journal of Horticultural Science, 37(3), 615-627.
Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic and biotic stress in plants—recent advances and future perspectives, 481-506.
Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255.
Majkowska-Gadomska, J., Jadwisieńczak, K., Francke, A., & Kaliniewicz, Z. (2022). Effect of biostimulants on the yield and quality of selected herbs. Applied Sciences, 12(3), 1500.
Mikhi, S., Doulati, B., & Rahimi, A. (2019). Effects of Micronutrients and Humic Substance Application on some Quantitative and Qualitative Traits of Medicinal and Aromatic Herbs of Istanbul oregano. Agricultural Engineering, 42(2), 51-66.
Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signalling and abiotic stress. Physiologia plantarum, 133(3):481-489.
Mujezinović, F., Avdić, J., Livančić, B., Ašimović, Z., Smajić Murtić, M., & Murtic, S. (2022). Enhancement of antioxidant properties of lavender (Lavandula officinalis L.), sage (Salvia officinalis L.) and basil (Ocimum basilicum L.) by application of natural biostimulants. Agriculturae Conspectus Scientificus, 87(1), 77-81.
Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26, 2256.
Nia, A. F., Badi, H. N., Mehrafarin, A., Bahman, S., & Sahandi, M. S. (2016). Changes in the essential oil content and terpene composition of rosemary (Rosmarinus officinalis L.) by using plant biostimulants. Acta agriculturae Slovenica, 107(1), 147-157.
O. Elansary, H., Mahmoud, E. A., El-Ansary, D. O., & Mattar, M. A. (2019). Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy, 10(1), 6.
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
Paulert, R., Ascrizzi, R., Malatesta, S., Berni, P., Noseda, M. D., Mazetto de Carvalho, M., & Pistelli, L. (2021). Ulva intestinalis extract acts as biostimulant and modulates metabolites and hormone balance in basil (Ocimum basilicum L.) and parsley (Petroselinum crispum L.). Plants, 10(7), 1391.
Pirzad, A., & Mohammadzadeh, S. (2018). Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agricultural Water Management, 204, 1-10.
Rahman, S., Iqbal, M., & Husen, A. (2023). Medicinal plants and abiotic stress: an overview. Medicinal Plants: Their Response to Abiotic Stress, 1-34.
Ramakrishna, A., & Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6:1720–1731
Rasuli, N., Riahi, H., Shariatmadari, Z., Nohooji, M. G., MehrabanJoubani, P., & Dehestani, A. (2024). Enhancing thymol and carvacrol biosynthesis in thymus vulgaris l. using laurencia caspica seaweed extract: biostimulant potential and gene expression ınsights. Jounal of Applied Physology, https://doi.org/10.21203/rs.3.rs-4626550/v1
Saber, M., Changizi, M., Khaghani, S., Gamariyan, M., Pourmeidani, A., & Jafari, A. A. (2019). Effect of Salinity and Humic Acid on Morphological Traits and Essential Oil Content of Thymus Kotschyanus. Archives of Pharmacy Practice, 10(2-2019), 89-96.
Said-Al Ahl, H. A. H., & Omer, E. A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57(2).
Santini, G., Biondi, N., Rodolfi, L., & Tredici, M. R. (2021). Plant biostimulants from cyanobacteria: An emerging strategy to improve yields and sustainability in agriculture. Plants, 10(4), 643.
Savvas, D., & Ntatsi, G. (2015). Biostimulant Activity of Silicon in Horticulture. Science Horticulture, 196, 66–81.
Süntar, I., Oyardı, O., Akkol, E. K., & Ozçelik, B. (2016). Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharmaceutical Biology, 54(6), 1065-1070.
Truzzi, E., Benvenuti, S., Bertelli, D., Francia, E., & Ronga, D. (2021). Effects of biostimulants on the chemical composition of essential oil and hydrosol of lavandin (Lavandula x intermedia emeric ex loisel.) cultivated in tuscan-emilian apennines. Molecules, 26(20), 6157.
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12.
Wang, J., Song, L., Gong, X., Xu, J., & Li, M. (2020). Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, 21(4), 1446.
Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244.
Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers Plant Science, 7, 2049.
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50.
Zarezadeh, S., Riahi, H., Shariatmadari, Z., & Sonboli, A. (2020). Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. Journal of Applied Phycology, 32, 1231-1241.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.