Morphological, Thermal and Functional Properties of Horse Chestnut Starches Produced by Alkaline and Ultrasound Assisted Methods

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i3.611-619.7463

Keywords:

Amylose, Alkaline/ultrasonic methods, Extraction, Horse chestnut, Starch

Abstract

Global climate change and a growing population are driving research into alternative starch sources. The aim of this study was to produce starch from horse chestnut seeds by alkali and ultrasound assisted methods and to determine the morphological, thermal and functional properties of the produced starches. The ultrasound-assisted method increased the swelling power and water/oil holding values of the starches and decreased the syneresis values. The samples showed gel formation at a minimum starch content of 6% and 12%. The amylose contents of the starches produced by the alkaline and ultrasonic methods were 25.41% and 29.86%, respectively. The highest temperatures of thermal degradation of the starches were determined in the range 221-343°C. The ultrasonic method increased the lmax value of starch from 523,0 nm to 583 nm and decreased the specific rotation angle from 59.90 to 21.75. Thermogravimetric data showed that 50% of the mass was lost in the range 302-312°C for the alkaline method and 303-304°C for the ultrasonic assisted method. Ultrasonication caused a partial change in the structure of starches with orthorhombic crystal structure. This study comprehensively investigates alternative starch sources. The starches produced have the potential to ortorombik be used in the production of gluten-free products and in products where a gel structure is desired.

References

Ahmad, M., Ashraf, B. Gani, A. & Gani, A. (2017). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Nutraceutical, morphological, structural and the release behavior of capsules during in-vitro digestion. Int. J. Biol. Macromol., 109, 435-442. https://doi.org/10.1016/j.ijbiomac.2017.11.122

Ahmad, M., Gani, A., Hassan, I., Huang, Q. & Shabbir, H. (2020). Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 10, 3533. https://doi.org/10.1038/s41598-020-60380-0

Akbaş, H. (2020). Spectroscopic, crystallographic and thermal characterizations of monospiro (N/N) cyclotriphosphazenes with 9-ethyl-3-carbazolyl pendant arm. Journal of Molecular Structure. 1200, 127079. https://doi.org/10.1016/j.molstruc.2019.127079

Amiri, S., Shakeri, A., Sohrabi, M., Khalajzadeh, R. & Ghasemi, S. E. (2019). Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chemistry, 271, 762-766. https://doi.org/10.1016/j.foodchem.2018.07.144

Atasoy, A. F., Hayoğlu, İ., Korkmaz, A., Esra, K. & Yıldırım, A. A. (2017). study on the determination of aflatoxin content of traditional home isot spice. Harran Journal of Agriculture and Food Sciences, 21(1), 35-40. https://doi.org/10.29050/harranziraat.303132

Boukhelkhal, M. & Moulai-Mostefa, N. (2017). Physicochemical characterization of starch isolated from soft acorns of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) grown in Algeria. Journal of Food Measurement and Characterization, 11, 1995-2005. https://doi.org/10.1007/s11694-017-9582-6

Cabrera-Ramírez, A. H., Cervantes-Ramírez, E., Morales-Sánchez, E., Rodriguez-García, M. E., Reyes-Vega, M. D. L. L., & Gaytán-Martínez, M. (2021). Effect of extrusion on the crystalline structure of starch during RS5 formation. Polysaccharides, 2(1), 187-201. https://doi.org/10.3390/polysaccharides2010013

Castaño, J., Rodríguez-Lamazares, S., Contreras, K., Carrasco, C., Pozo, C., Bouza, C. & Giraldo, D. (2014). Horse chestnut (Aesculus hippocastanum L.) starch: basic physico-chemical characteristics and use as thermoplastic material. Carbohydrate Polymers, 112, 677-685. https://doi.org/10.1016/j.carbpol.2014.06.046

Chun, A., Lee, H. J., Hamaker, B. R. & Janaswamy, S. (2015). Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). Journal of agricultural and food chemistry, 63(12), 3085-3093. https://doi.org/10.1021/jf504870p

Coffmann, C. W. & Garciaj, V. V. (1977). Functional properties and amino acid content of a protein isolate from mung bean flour. International Journal of Food Science & Technology, 12(5), 473-484. https://doi.org/10.1111/j.1365-2621.1977.tb00132.x

Correia, P. R. & Beirão-da-Costa, M. L. (2012). Starch isolation from chestnut and acorn flours through alkaline and enzymatic methods. Food and Bioproducts Processing, 90(2), 309-316. https://doi.org/10.1016/j.fbp.2011.06.005

Çiçek Özkan, B., & Güner, M. (2022). Isolation, characterization, and comparison of nanocrystalline cellulose from solid wastes of horse chestnut and chestnut seed shell. Cellulose, 29(12), 6629-6644. https://doi.org/10.1007/s10570-022-04682-8

Dudek-Makuch, M. & Matławska, I. (2011). Flavonoids from the flowers of Aesculus hippocastanum. Acta Pol. Pharm, 68(3), 403-408.

Gullón, P., Gullón, B., Muñiz-Mouro, A., Lú-Chau, T. A. & Eibes, G. (2020). Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach. Science of the Total Environment, 730, 139143. https://doi.org/10.1016/j.scitotenv.2020.139143

Hoover, R. & Ratnayake, W. S. (2002). Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food chemistry, 78(4), 489-498. https://doi.org/10.1016/s0308-8146(02)00163-2

Hossain, M. S., Kabir, M. R., Reybroeck, W. & Alam, M. Z. (2015). Study on the quality of honey collected from three floral sources of Bangladesh. International Journal of Scientific and Research Publications, 302.

Janarthanan, U. K., Varadharajan, V. & Krishnamurthy, V. (2012). Physicochemical evaluation, Phytochemical screening and chromatographic fingerprint profile of Aegle marmelos (L.) leaf extracts. World journal of pharmaceutical research, 1(3), 813-837.

Jiugao, Y., Ning, W. & Xiaofei, M. (2005). The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch‐Stärke, 57(10), 494-504. https://doi.org/10.1002/star.200500423

Kong, L., Lee, C. Kim, S. H. & Ziegler, G. R. (2014). Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. The Journal of Physical Chemistry B, 118(7), 1775-1783. https://doi.org/10.1021/jp411130n

Lemos, A. M., Abraao, A. S., Cruz, B. R., Morgado, M. L., Rebelo, M. & Nunes, F. M. (2015). Effect of granular characteristics on the viscoelastic and mechanical properties of native chestnut starch (Castanea sativa Mill). Food Hydrocolloids, 51, 305-317. https://doi.org/10.1016/j.foodhyd.2015.05.021

Lu, Z. H., Donner, E., Yada, R. Y. & Liu, Q. (2012). Impact of γ-irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chemistry, 133(4), 1188-1195. https://doi.org/10.1016/j.foodchem.2011.07.028

Nwokocha, L.M. & Williams, P.A. (2011). Comparative study of physicochemical properties of breadfruit (Artocarpus altilis) and white yam starches. Carbohydrate polymers, 85(2), 294-302. https://doi.org/10.1016/j.carbpol.2011.01.050

Owczarek-Januszkiewicz, A., Kicel, A. & Olszewska, M. A. (2023). Aesculus hippocastanum in the pharmaceutical industry and beyond–Phytochemistry, bioactivity, present application, and future perspectives. Industrial Crops and Products, 193, 116187. https://doi.org/10.1016/j.indcrop.2022.116187

Perera, C. & Hoover, R. (1999). Influence of hydroxylpropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chemistry, 64(3), 361-375. https://doi.org/10.1016/s0308-8146(98)00130-7

Pietri, A., Rastelli, S., Mulazzi, A. & Bertuzzi, T. (2012). Aflatoxins and ochratoxin A in dried chestnuts and chestnut flour produced in Italy. Food Control, 25(2), 601-606. https://doi.org/10.1016/j.foodcont.2011.11.042

Polavarapu, P.L. (2002). Optical rotation: recent advances in determining the absolute configuration. Chirality, 14(10), 768-781. https://doi.org/10.1002/chir.10145

Rafiq, S. I., Jan, K., Singh, S. & Saxena, D. C. (2015) Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J. Food Sci. Technol., 52(9), 5651–5660. https://doi.org/10.1007/s13197-014-1692-0

Rafiq, S. I., Singh, S. & Saxena, D. C. (2016). Effect of heat-moisture and acid treatment on physicochemical, pasting, thermal and morphological properties of Horse Chestnut (Aesculus indica) starch. Food Hydrocolloids, 57, 103-113. https://doi.org/10.1016/j.foodhyd.2016.01.009

Rodriguez-Garcia, M. E., Hernandez-Landaverde, M. A., Delgado, J. M., Ramirez-Gutierrez, C. F., Ramirez-Cardona, M., Millan-Malo, B. M. & Londoño-Restrepo, S. M. (2021). Crystalline structures of the main components of starch. Current Opinion in Food Science, 37, 107-111. https://doi.org/10.1016/j.cofs.2020.10.002

Shah, U., Gani, A., Ashwar, B. A., Shah, A., Wani, I. A. & Masoodi, F. A. (2016). Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch. International Journal of Biological Macromolecules, 84, 166-173. https://doi.org/10.1016/j.ijbiomac.2015.12.020

Singh, J., McCarthy, O. J. & Singh, H. (2006). Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, 64(4), 569-581. https://doi.org/10.1016/j.carbpol.2005.11.013

Singh, G. D., Sharma, R., Bawa, A. S. & Saxena, D. C. (2008). Drying and rehydration characteristics of water chestnut (Trapa natans) as a function of drying air temperature. Journal of food engineering, 87(2), 213-221. https://doi.org/10.1016/j.jfoodeng.2007.11.027

Stawski, D. (2008). New determination method of amylose content in potato starch. Food Chemistry, 110(3), 777-781. https://doi.org/10.1016/j.foodchem.2008.03.009

Stevenson, D.G., Doorenbos, R.K., Jane, J.L. & Inglett, G.E. (2006). Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch‐Stärke, 58(10), 509-519. https://doi.org/10.1002/star.200600534

Takeda, C., Takeda, Y. & Hizukuri, S. (1983). Physicochemical properties of lily starch. Cereal Chem., 60(3), 212-216.

Van Soest, J. J., Tournois, H., de Wit, D. & Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate research, 279, 201-214. https://doi.org/10.1016/0008-6215(95)00270-7

Vishal Banyal, S., Shukla, A. K., Kumari, A., Kumar, A., Khatak, A. & Kumar, M. (2023). Effect of modification on quality parameters of jackfruit (atrocarpus heterophyllus) seed starch to valorize its food potential and in-silico investigation of the pharmacological compound against salmonellosis. Waste and Biomass Valorization, 14, 1597-1610. https://doi.org/10.1007/s12649-022-01945-0

Wani, I. A., Sogi, D. S., Wani, A. A., Gill, B. S. & Shivhare, U. S. (2010). Physico‐chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International journal of food science & technology, 45(10), 2176-2185. https://doi.org/10.1111/j.1365-2621.2010.02379.x

Wani, I. A., Sogi, D. S. & Gill, B. S. (2012). Physicochemical properties of acetylated starches from some Indian kidney bean (Phaseolus vulgaris L.) cultivars. International Journal of Food Science & Technology, 47(9), 1993-1999. https://doi.org/10.1111/j.1365-2621.2012.03062.x

Wani, I. A., Sogi, D. S. & Gill, B. S. (2013). Physicochemical and functional properties of flours from three Black gram (Phaseolus mungo L.) cultivars. International journal of food science & technology, 48(4), 771-777. https://doi.org/10.1111/ijfs.12025

Wani, I. A., Jabeen, M., Geelani, H., Masoodi, F. A., Saba, I. & Muzaffar, S. (2014). Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch. Food hydrocolloids, 35, 253-263. https://doi.org/10.1016/j.foodhyd.2013.06.002

Wendlandt, W.W. (1986). The development of thermal analysis instrumentation Thermochimica acta, 100(1), 1955–1985.

Wójcik, M., Dziki, D., Matwijczuk, A. & Gawlik-Dziki, U. (2023) Walnut flour as an ingredient for producing low-carbohydrate bread: physicochemical, sensory, and spectroscopic characteristics. Foods,12(17), 3320. https://doi.org/10.3390/foods12173320

Yu, S., Ma, Y., Menager, L. & Sun, D. W. (2012). Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology, 5, 626-637. https://doi.org/10.1007/s11947-010-0330-8

Zhu, X. Cheng, Y. Chen, P. Peng, P. Liu, S. Li, D. & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels, Innovative Food Science & Emerging Technologies, 37(A), 91-97. https://doi.org/10.1016/j.ifset.2016.08.0

Downloads

Published

14.03.2025

How to Cite

Inatci, Z., & Cingöz, A. (2025). Morphological, Thermal and Functional Properties of Horse Chestnut Starches Produced by Alkaline and Ultrasound Assisted Methods. Turkish Journal of Agriculture - Food Science and Technology, 13(3), 611–619. https://doi.org/10.24925/turjaf.v13i3.611-619.7463

Issue

Section

Research Paper