Alkali ve Ultrasonik Destekli Yöntemlerle Üretilen At Kestanesi Nişastalarının Morfolojik, Termal ve Fonksiyonel Özellikleri
DOI:
https://doi.org/10.24925/turjaf.v13i3.611-619.7463Anahtar Kelimeler:
Amiloz- At kestanesi- Alkali/Ulrasonik yöntemler- Nişasta- EkstraksiyonÖzet
Küresel iklim değişiklikleri ve artan nüfus alternatif nişasta kaynaklarına yönelik araştırmaları artırmaktadır. Bu çalışmanın amacı, at kestanesi tohumlarından alkali ve ultrason destekli yöntemlerle nişasta üretimi gerçekleştirmek ve üretilen nişastaların morfolojik, termal ve fonksiyonel özelliklerini belirlemektir. Ultrason destekli yöntem nişastaların şişme gücü ve su/yağ tutma kapasite değerlerini yükseltmiş, sineresis değerlerini ise düşürmüştür. Örnekler minimum %6 ve %12 nişasta oranlarına sahipken jel oluşumu göstermiştir. Alkali ve ultrasonik yöntemlerle üretilen nişastaların amiloz içerikleri sırasıyla %25,41 ve %29,86’dır. Nişastaların termal bozunmasının en yüksek olduğu sıcaklıklar 221-343°C aralığında tespit edilmiştir. Ultrasonik yöntem nişastanın lmax değerini 523,0 nm’den 583 nm’ye yükseltmiş ve spesifik dönme açısını 59,90’dan 21,75’e düşürmüştür. Termogravimetrik veriler kütlenin %50’sinin alkali yöntem için 302-312°C ve ultrason destekli yöntem için 303-304°C aralığında kaybolduğunu göstermiştir. Ultrasonikasyon, ortorombik kristal yapıya sahip nişastaların yapısında kısmi bir değişikliğe neden olmuştur. Çalışmamız alternatif nişasta kaynakları ile ilgili kapsamlı bir çalışmadır. Üretilen nişastaların başta glutensiz ürün üretiminde ve jel yapısı istenen ürünlerde kullanılma potansiyeli bulunmaktadır.
Referanslar
Ahmad, M., Ashraf, B. Gani, A. & Gani, A. (2017). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Nutraceutical, morphological, structural and the release behavior of capsules during in-vitro digestion. Int. J. Biol. Macromol., 109, 435-442. https://doi.org/10.1016/j.ijbiomac.2017.11.122
Ahmad, M., Gani, A., Hassan, I., Huang, Q. & Shabbir, H. (2020). Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 10, 3533. https://doi.org/10.1038/s41598-020-60380-0
Akbaş, H. (2020). Spectroscopic, crystallographic and thermal characterizations of monospiro (N/N) cyclotriphosphazenes with 9-ethyl-3-carbazolyl pendant arm. Journal of Molecular Structure. 1200, 127079. https://doi.org/10.1016/j.molstruc.2019.127079
Amiri, S., Shakeri, A., Sohrabi, M., Khalajzadeh, R. & Ghasemi, S. E. (2019). Optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology. Food Chemistry, 271, 762-766. https://doi.org/10.1016/j.foodchem.2018.07.144
Atasoy, A. F., Hayoğlu, İ., Korkmaz, A., Esra, K. & Yıldırım, A. A. (2017). study on the determination of aflatoxin content of traditional home isot spice. Harran Journal of Agriculture and Food Sciences, 21(1), 35-40. https://doi.org/10.29050/harranziraat.303132
Boukhelkhal, M. & Moulai-Mostefa, N. (2017). Physicochemical characterization of starch isolated from soft acorns of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) grown in Algeria. Journal of Food Measurement and Characterization, 11, 1995-2005. https://doi.org/10.1007/s11694-017-9582-6
Cabrera-Ramírez, A. H., Cervantes-Ramírez, E., Morales-Sánchez, E., Rodriguez-García, M. E., Reyes-Vega, M. D. L. L., & Gaytán-Martínez, M. (2021). Effect of extrusion on the crystalline structure of starch during RS5 formation. Polysaccharides, 2(1), 187-201. https://doi.org/10.3390/polysaccharides2010013
Castaño, J., Rodríguez-Lamazares, S., Contreras, K., Carrasco, C., Pozo, C., Bouza, C. & Giraldo, D. (2014). Horse chestnut (Aesculus hippocastanum L.) starch: basic physico-chemical characteristics and use as thermoplastic material. Carbohydrate Polymers, 112, 677-685. https://doi.org/10.1016/j.carbpol.2014.06.046
Chun, A., Lee, H. J., Hamaker, B. R. & Janaswamy, S. (2015). Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). Journal of agricultural and food chemistry, 63(12), 3085-3093. https://doi.org/10.1021/jf504870p
Coffmann, C. W. & Garciaj, V. V. (1977). Functional properties and amino acid content of a protein isolate from mung bean flour. International Journal of Food Science & Technology, 12(5), 473-484. https://doi.org/10.1111/j.1365-2621.1977.tb00132.x
Correia, P. R. & Beirão-da-Costa, M. L. (2012). Starch isolation from chestnut and acorn flours through alkaline and enzymatic methods. Food and Bioproducts Processing, 90(2), 309-316. https://doi.org/10.1016/j.fbp.2011.06.005
Çiçek Özkan, B., & Güner, M. (2022). Isolation, characterization, and comparison of nanocrystalline cellulose from solid wastes of horse chestnut and chestnut seed shell. Cellulose, 29(12), 6629-6644. https://doi.org/10.1007/s10570-022-04682-8
Dudek-Makuch, M. & Matławska, I. (2011). Flavonoids from the flowers of Aesculus hippocastanum. Acta Pol. Pharm, 68(3), 403-408.
Gullón, P., Gullón, B., Muñiz-Mouro, A., Lú-Chau, T. A. & Eibes, G. (2020). Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach. Science of the Total Environment, 730, 139143. https://doi.org/10.1016/j.scitotenv.2020.139143
Hoover, R. & Ratnayake, W. S. (2002). Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food chemistry, 78(4), 489-498. https://doi.org/10.1016/s0308-8146(02)00163-2
Hossain, M. S., Kabir, M. R., Reybroeck, W. & Alam, M. Z. (2015). Study on the quality of honey collected from three floral sources of Bangladesh. International Journal of Scientific and Research Publications, 302.
Janarthanan, U. K., Varadharajan, V. & Krishnamurthy, V. (2012). Physicochemical evaluation, Phytochemical screening and chromatographic fingerprint profile of Aegle marmelos (L.) leaf extracts. World journal of pharmaceutical research, 1(3), 813-837.
Jiugao, Y., Ning, W. & Xiaofei, M. (2005). The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch‐Stärke, 57(10), 494-504. https://doi.org/10.1002/star.200500423
Kong, L., Lee, C. Kim, S. H. & Ziegler, G. R. (2014). Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. The Journal of Physical Chemistry B, 118(7), 1775-1783. https://doi.org/10.1021/jp411130n
Lemos, A. M., Abraao, A. S., Cruz, B. R., Morgado, M. L., Rebelo, M. & Nunes, F. M. (2015). Effect of granular characteristics on the viscoelastic and mechanical properties of native chestnut starch (Castanea sativa Mill). Food Hydrocolloids, 51, 305-317. https://doi.org/10.1016/j.foodhyd.2015.05.021
Lu, Z. H., Donner, E., Yada, R. Y. & Liu, Q. (2012). Impact of γ-irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chemistry, 133(4), 1188-1195. https://doi.org/10.1016/j.foodchem.2011.07.028
Nwokocha, L.M. & Williams, P.A. (2011). Comparative study of physicochemical properties of breadfruit (Artocarpus altilis) and white yam starches. Carbohydrate polymers, 85(2), 294-302. https://doi.org/10.1016/j.carbpol.2011.01.050
Owczarek-Januszkiewicz, A., Kicel, A. & Olszewska, M. A. (2023). Aesculus hippocastanum in the pharmaceutical industry and beyond–Phytochemistry, bioactivity, present application, and future perspectives. Industrial Crops and Products, 193, 116187. https://doi.org/10.1016/j.indcrop.2022.116187
Perera, C. & Hoover, R. (1999). Influence of hydroxylpropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chemistry, 64(3), 361-375. https://doi.org/10.1016/s0308-8146(98)00130-7
Pietri, A., Rastelli, S., Mulazzi, A. & Bertuzzi, T. (2012). Aflatoxins and ochratoxin A in dried chestnuts and chestnut flour produced in Italy. Food Control, 25(2), 601-606. https://doi.org/10.1016/j.foodcont.2011.11.042
Polavarapu, P.L. (2002). Optical rotation: recent advances in determining the absolute configuration. Chirality, 14(10), 768-781. https://doi.org/10.1002/chir.10145
Rafiq, S. I., Jan, K., Singh, S. & Saxena, D. C. (2015) Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J. Food Sci. Technol., 52(9), 5651–5660. https://doi.org/10.1007/s13197-014-1692-0
Rafiq, S. I., Singh, S. & Saxena, D. C. (2016). Effect of heat-moisture and acid treatment on physicochemical, pasting, thermal and morphological properties of Horse Chestnut (Aesculus indica) starch. Food Hydrocolloids, 57, 103-113. https://doi.org/10.1016/j.foodhyd.2016.01.009
Rodriguez-Garcia, M. E., Hernandez-Landaverde, M. A., Delgado, J. M., Ramirez-Gutierrez, C. F., Ramirez-Cardona, M., Millan-Malo, B. M. & Londoño-Restrepo, S. M. (2021). Crystalline structures of the main components of starch. Current Opinion in Food Science, 37, 107-111. https://doi.org/10.1016/j.cofs.2020.10.002
Shah, U., Gani, A., Ashwar, B. A., Shah, A., Wani, I. A. & Masoodi, F. A. (2016). Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch. International Journal of Biological Macromolecules, 84, 166-173. https://doi.org/10.1016/j.ijbiomac.2015.12.020
Singh, J., McCarthy, O. J. & Singh, H. (2006). Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, 64(4), 569-581. https://doi.org/10.1016/j.carbpol.2005.11.013
Singh, G. D., Sharma, R., Bawa, A. S. & Saxena, D. C. (2008). Drying and rehydration characteristics of water chestnut (Trapa natans) as a function of drying air temperature. Journal of food engineering, 87(2), 213-221. https://doi.org/10.1016/j.jfoodeng.2007.11.027
Stawski, D. (2008). New determination method of amylose content in potato starch. Food Chemistry, 110(3), 777-781. https://doi.org/10.1016/j.foodchem.2008.03.009
Stevenson, D.G., Doorenbos, R.K., Jane, J.L. & Inglett, G.E. (2006). Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch‐Stärke, 58(10), 509-519. https://doi.org/10.1002/star.200600534
Takeda, C., Takeda, Y. & Hizukuri, S. (1983). Physicochemical properties of lily starch. Cereal Chem., 60(3), 212-216.
Van Soest, J. J., Tournois, H., de Wit, D. & Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate research, 279, 201-214. https://doi.org/10.1016/0008-6215(95)00270-7
Vishal Banyal, S., Shukla, A. K., Kumari, A., Kumar, A., Khatak, A. & Kumar, M. (2023). Effect of modification on quality parameters of jackfruit (atrocarpus heterophyllus) seed starch to valorize its food potential and in-silico investigation of the pharmacological compound against salmonellosis. Waste and Biomass Valorization, 14, 1597-1610. https://doi.org/10.1007/s12649-022-01945-0
Wani, I. A., Sogi, D. S., Wani, A. A., Gill, B. S. & Shivhare, U. S. (2010). Physico‐chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International journal of food science & technology, 45(10), 2176-2185. https://doi.org/10.1111/j.1365-2621.2010.02379.x
Wani, I. A., Sogi, D. S. & Gill, B. S. (2012). Physicochemical properties of acetylated starches from some Indian kidney bean (Phaseolus vulgaris L.) cultivars. International Journal of Food Science & Technology, 47(9), 1993-1999. https://doi.org/10.1111/j.1365-2621.2012.03062.x
Wani, I. A., Sogi, D. S. & Gill, B. S. (2013). Physicochemical and functional properties of flours from three Black gram (Phaseolus mungo L.) cultivars. International journal of food science & technology, 48(4), 771-777. https://doi.org/10.1111/ijfs.12025
Wani, I. A., Jabeen, M., Geelani, H., Masoodi, F. A., Saba, I. & Muzaffar, S. (2014). Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch. Food hydrocolloids, 35, 253-263. https://doi.org/10.1016/j.foodhyd.2013.06.002
Wendlandt, W.W. (1986). The development of thermal analysis instrumentation Thermochimica acta, 100(1), 1955–1985.
Wójcik, M., Dziki, D., Matwijczuk, A. & Gawlik-Dziki, U. (2023) Walnut flour as an ingredient for producing low-carbohydrate bread: physicochemical, sensory, and spectroscopic characteristics. Foods,12(17), 3320. https://doi.org/10.3390/foods12173320
Yu, S., Ma, Y., Menager, L. & Sun, D. W. (2012). Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology, 5, 626-637. https://doi.org/10.1007/s11947-010-0330-8
Zhu, X. Cheng, Y. Chen, P. Peng, P. Liu, S. Li, D. & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels, Innovative Food Science & Emerging Technologies, 37(A), 91-97. https://doi.org/10.1016/j.ifset.2016.08.0
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.