Role of N2-Fixing Plant Growth-Promoting Rhizobacteria in Some Selected Vegetables

N2-Fixing Plant Growth-Promoting Rhizobacteria

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v11i6.1183-1194.6033

Anahtar Kelimeler:

Biological nitrogen fixation- bio-fertilizers- sustainable production- vegetables- PGPR

Özet

Due to the increase in food-borne diseases, especially in recent years, consumers' orientation to healthy products and their emphasis on consumption force producers to environmentally friendly products. Nitrogen is the most widely used plant nutrient in the world. Nitrogen, a very expensive input due to its excessive use, pollutes the environment and causes nitrate accumulation in plants. Therefore, vegetable growers strive to replace chemical fertilizers such as nitrogen with environmentally friendly and cost-effective sources. PGPRs stand out in this regard and at the same time, their potential in environmentally and consumer-friendly vegetable production needs to be revealed. In this study, the importance and potential role of N2-fixing PGPR are discussed for the improvement of yield and yield components in environment-friendly vegetable production for healthy human nutrition.

Yazar Biyografileri

Ahmet Hakan Ürüşan, Bingöl University, Vocational School of Food, Agriculture and Livestock, Bingöl

Bingöl University, Vocational School of Food, Agriculture and Livestock, Bingöl

Serpil Tıraşçı, Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum

Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum

Mustafa Kaşka, Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum

Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum

Referanslar

Abramovic H, Abram V, Cuk A, Ceh B, Smole-Mozina S, Vidmar M, Pavlovic M, Ulrih NP. 2018. Antioxidative and antibacterial properties of organically grown thyme (Thymus sp.) and basil (Ocimum basilicum L.). Turkish Journal of Agriculture and Forestry, 42: 185-194. DOI:10.3906/tar-1711-82

Acurio Vásconez RD, Mamarandi Mossot JE, Ojeda Shagñay AG, Tenorio Moya EM, Chiluisa Utreras VP, Vaca Suquillo IDLÁ. 2020. Evaluation of Bacillus spp. as plant growth-promoting rhizobacteria (PGPR) in broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa). Ciencia y Tecnología Agropecuaria, 21: e1465. DOI: 10.21930/rcta.vol21_num3_art:1465

Adesemoye AO, Torbert HA, Kloepper JW. 2010. Increased plant uptake of nitrogen from N-15-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology, 46: 54-58. DOI: 10.1016/j.apsoil.2010.06.010

Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58: 921-929. DOI: 10.1007/s00248-009-9531-y

Aksoy A, Kaymak HC. 2021. Competition power of Turkey’s tomato export and comparison with Balkan countries. Bulgarian Journal of Agricultural Science, 27: 253–258.

Aloo BN, Makumba BA, Mbega ER. 2019. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219: 26–39. DOI: 10.1016/j.micres.2018.10.011

Altuntas O. 2018. A comparative study on the effects of different conventional, organic and bio-fertilizers on broccoli yield and quality. Applied Ecology and Environmental Research, 16: 1595-1608. DOI: 10.15666/aeer/1602_15951608

Aslam H, Ahmad SR, Anjum T, Akram W. 2018. Native halotolerant plant growth promoting bacterial strains can ameliorate salinity stress on tomato plants under field con-ditions. International Journal of Agriculture and Biology, 20: 315–322. DOI:10.17957/IJAB/15.0491

Baba ZA, Tahir S, Wani FS, Hamid B, Nazir M, Hamid B. 2018. Impact of Azotobacter and inorganic fertilizers on yield attributes of tomato. International Journal of Current Microbiology and Applied Sciences, 7: 3803–3809. DOI:10.20546/ijcmas.2018.702.450

Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50: 521-577. DOI: 10.1139/W04-035

Bashan Y, Holguin G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, 43: 103–121. DOI: 10.1139/m97-015

Bashan Y, Levanony H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36: 591–608. DOI: 10.1139/M90-105

Bashyal LN. 2011. Response of cauliflower to nitrogen fixing biofertilizer and graded levels of nitrogen. The Journal of Agriculture and Environment, 12: 41–50. DOI: 10.3126/aej.v12i0.7562

Bhardwaj S, Kaushal R, Kaushal M, Bhardwaj KK. 2018. Integrated nutrient management for improved cauliflower yield and soil health. International Journal of Vegetable Science, 24: 29-42. DOI: 10.1080/19315260.2017.1370762

Carillo P, Colla G, El-Nakhel C, Bonini P, D’Amelia L, Dell’Aversana E, Pannico A, Giordano M, Sifola MI, Kyriacou MC, Pascale SD, Rouphael Y. 2019. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy, 9: 249. DOI: 10.3390/agronomy9050249

Castillo-Aguilar CD, Zuniga-Aguilar JJ, Guzman-Antonio AA Garruna R. 2017. PGPR inoculation improves growth, nutrient uptake and physiological parameters of Capsicum chinense plants. Phyton-International Journal of Experimental Botany, 86: 199-204. DOİ: 10.32604/phyton.2017.86.199

Choudhury MR, Saikia A, Talukdar NC. 2004. Response of cauliflower to integrated nutrient management practices. Bioved, 15: 83–87.

Colla G, Rouphael Y, Mirabelli C, Cardarelli M. 2011. Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. Journal of Plant Nutrition and Soil Science, 174: 933–941. DOI: 10.1002/jpln.201000325

Constantino M, Go´ mez-A´ lvarez R, A´ lvarez-Solis JD, Geissen V, Huerta E, Barba E. 2008. Effect of inoculation with rhizobacteria and Arbuscular Mycorrhizal Fungi on growth and yield of Capsicum chinense Jacquin. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 109: 169-180

Custic M, Poljak M, Toth N. 2000. Effects of nitrogen nutrition upon the quality and yield of head chicory (Chicorium intybus L. var. foliosum). Acta Horticulturae, 533: 401 - 410. DOI: 10.17660/ActaHortic.2000.533.50

Çakmakçı R, Erat M, Erdoğan Ü, Dönmez MF. 2007. The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170:288-295. DOI:10.1002/jpln.200625105

de Barros Sylvestre T, Braos LB, Batistella Filho F, da Cruz MCP, Ferreira ME. 2019. Mineral nitrogen fertilization effects on lettuce crop yield and nitrogen leaching. Scientia Horticulturae, 255: 153-160. DOI: 10.1016/j.scienta.2019.05.032

Decateau RD. 2000. Vegetable Crops. Prentice-Hall Inc., Upper Saddle River, New Jersey, 464 p.

del Rosario Cappellari L, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E. 2015. Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita). Journal of Chemical Ecology, 41: 149-158. DOI 10.1007/s10886-015-0549-y

Dinler, B. S., Cetinkaya, H., Akgun, M., Korkmaz, K. 2021. Simultaneous treatment of different gibberellic acid doses induces ion accumulation and response mechanisms to salt damage in maize roots. Journal of Plant Biochemistry and Physiology, 9, 258.

Dursun A, Yildirim E, Ekinci M, Turan M, Kul R, Karagöz FP. 2017. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage. In: II. International Conference on Advances in Natural and Applied Sciences AIP Conference Proceedings, 25 April 2017, p. 020061. DOI: https://doi.org/10.1063/1.4981709

Dursun A, Ekinci M, Donmez MF. 2008. Effects of inoculation bacteria on chemical content, yield and growth in rocket (Eruca vesicaria subsp. sativa). Asian Journal of Chemistry, 20: 3197.

Ekinci M, Turan M, Yildirim E, Güneş A, Kotan R, Dursun A. 2014. Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Scientiarum Polonorum Hortorum Cultus, 13: 71-85.

El-Nemr MA, Zaki MF, Tantawy AS, Abdel-Mawgoud AMR. 2011. Enhancement of Growth and Production of Broccoli Crop Using Bio-Nutritional Foliar Compound. Australian Journal of Basic and Applied Sciences, 5: 2578-2583.

Fan XH, Zhang SA, Mo XD, Li YC, Fu YQ, Liu ZG. 2017. Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere, 27: 1027-1036. DOI: 10.1016/S1002-0160(17)60379-5

Fatima S, Anjum T. 2017. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Frontiers in Plant Science, 8: 848. DOI: 10.3389/fpls.2017.00848

Gagné S, Dehbi L, Le Quéré D, Cayer F, Morin JL, Lemay R, Fournier N. 1993. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biology and Biochemistry, 25: 269–272. DOI: 10.1016/0038-0717(93)90038-d

Garcia JAL, Probanza A, Ramos B, Palomino MR, Manero FJG. 2004. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24: 69-176. DOI: 10.1051/agro:2004020

Glick BR. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012: 963401. DOI: 10.6064/2012/963401

Glick BR. 1995.The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41:109–17. DOI: 10.1139/m95-015

Gowtham HG, Duraivadivel P, Hariprasad P, Niranjana SR. 2017. A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato (Solarium lycopersicum L.). Scientia Horticulturae, 224: 351-357. DOI: 10.1016/j.scienta.2017.06.017

Gravel V, Antoun H, Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39: 1968–1977. DOI: 10.1016/j.soilbio.2007.02.015

Gupta SK, Gupta AB, Gupta R. 2017. Pathophysiology of nitrate toxicity in humans in view of the changing trends of the global nitrogen cycle with special reference to India. In: Abrol YP, Adhya TK, Aneja VP, editors. In the Indian Nitrogen Assessment. Amsterdam, The Netherlands; p. 459–468. DOI: 10.1016/B978-0-12-811836-8.00028-8

Hernández-Montiel LG, Chiquito-Contreras CJ, Murillo-Ama¬dor B, Vidal-Hernández L, Quiñones-Aguilar EE, Chiquito- Contreras RG. 2017. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Journal of Soil Science and Plant Nutrition, 1003–1012. DOI:10.4067/S0718-95162017000400012

Hou MP, Oluranti BO. 2013. Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. Journal of Central South University, 20: 164-171. DOI: 10.1007/s11771-013-1472-4

Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. Journal of Basic Microbiology, 53: 1004-1015. DOI: 10.1002/jobm.201200141

Ibrikci H, Cetin M, Karnez E, Kirda C, Topcu S, Ryan J, Oztekin E, Dingil M, Korkmaz K, Oguz H. 2012. Spatial and temporal variability of groundwater nitrate concentrations in irrigated Mediterranean agriculture. Communications in Soil Science and Plant Analysis, 43: 47–59. https://doi.org/10.1080/00103624.2012.631413

James EK, Olivares FL. 1997. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences, 17: 77–119. DOI: 10.1080/07352689891304195

Jung BK, Kim SD, Khan AR, Lim JH, An CH, Kim YH, Song JH, Hong SJ, Shin JH. 2015. Rhizobacterial communities and red pepper (Capsicum annum) yield under different cropping systems. International Journal of Agriculture and Biology, 17: 734-74. DOI:10.17957/IJAB/14.0010

Jyolsna KS, Bharathi N, Riyaz Ali L, Paari K. 2021. Impact of Lysinibacillus macroides, a potential plant growth promoting rhizobacteria on growth, yield and nutritional value of tomato plant (Solanum lycopersicum L. F1 hybrid Sachriya). Plant Science Today, 8: 365–372. DOI: 10.14719/pst.2021.8.2.1082

Kalita M, Bharadwaz M, Dey T, Gogoi K, Dowarah P, Unni BG, Ozah D, Saikia I. 2015. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian Journal of Experimental Biology, 53: 56-60.

Kaushal M, Kaushal R. 2013. Plant growth promoting rhizobacteria impacts on cauliflower yield and soil health. The Bioscan, 8: 1-10.

Karnez E., İbrikçi B., Çetin M., Ryan J., Dingil M., Oztekin M.E., Korkmaz K., 2013. Implications of profile mineral nitrogen in an irrigated project area of Southern Turkey, Communications in Soil Science and Plant Analysis, 44, 1-4. https://doi.org/10.1080/00103624.2013.748861

Kaushal M, Kaushal R, Mandyal P. 2013. Impact of integrated nutrient management systems on cauliflower (Brassica oleracea var. botrytis) yield and soil nutrient status. Indian Journal of Agricultural Sciences, 83: 1013-6.

Kaushal M, Kaushal R, Thakur BS, Spehia RS. 2011. Effect of plant growth-promoting rhizobacteria at varying levels of N and P fertilizers on growth and yield of cauliflower in mid hills of Himachal Pradesh. International Journal of Farm Sciences, 1: 19-26.

Kaymak HÇ, Aksoy A, Kotan R. 2020. Inoculation with N2-fixing plant growth promoting rhizobacteria to reduce nitrogen fertilizer requirement of lettuce. Acta Scientiarum Polonorum-Hortorum Cultus, 19: 23-35. DOI: 10.24326/asphc.2020.5.3

Kaymak HC. 2019. Potential of PGPR in improvement of environmental-friendly vegetable production. In: Maheshwari DK, Dheeman S, editors. Field Crops: Sustainable Management by PGPR. Springer Nature Switzerland AG, p. 221-251. DOI: 10.1007/978-3-030-30926-8_9

Kaymak HC. 2013. Effect of nitrogen forms on growth, yield and nitrate accumulation of cultivated purslane (Portulaca oleracea L.). Bulgarian Journal of Agricultural Science, 19: 444-449.

Kaymak HC, Dönmez MF, Çakmakçı R. 2013. N2-fixing plant growth promoting rhizobacteria: As a potential application to increase yield, growth and element contents of leaves in Mentha piperita L. The European Journal of Plant Science and Biotechnology, "Vegetable Science and Biotechnology in Turkey", 7: 38-42.

Kaymak HC. 2010. Potential of PGPR in agricultural innovations. In: Maheshwari DK, Steinbüchel A, editors. Plant Growth and Health Promoting Bacteria, Microbiology Monographs. New York, p. 45-79. DOI: 10.1007/978-3-642-13612-2_3

Kılıç R, Korkmaz K. 2012. Residual effects of chemical fertilizers on agricultural soils. Research Journal of Biology Sciences, 5(2): 87-90.

Kim SN, Cho WK, Kim WI, Jee HJ, Parke CS. 2012. Growth Promotion of Pepper Plants by Pantoea ananatis B1-9 and its Efficient Endophytic Colonization Capacity in Plant Tissues. Plant Pathology Journal, 28: 270-281. DOI: 10.5423/PPJ.OA.02.2012.0026

Kim J, Rees DC. 1994. Nitrogenase and biological nitrogen fixation. Biochemistry, 33: 389-397. DOI: 10.1021/bi00168a001

Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS. 2008. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21:309-311.

Kloepper JW, Schroth MN. 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the Fourth International Conference on Plant Pathogen Bacteria. INRA, p. 879-882.

Korkmaz K, Ibrikci H, Ryan J, Buyuk G, Guzel N, Karnez E, Yagbasanlar T. 2008. Optimizing nitrojen fertilizer–use recommendations for winter wheat in a mediterranean-type environment using tissue nitrate testing. Communications in Soil Science and Plant Analysis 39: 1352-1366. https://doi.org/10.1080/00103620802004052

Korkmaz, K., Ibrikci, H., Karnez, E., Buyuk, G., Ryan, j., Oguz, H., Ulger, A.C. 2010. Responses of wheat genotypes to phosphorus fertilization under rainfed conditions in the Mediterranean region of Turkey. Scientific Research and Essays, 5(16), 2304-2311.

Korkmaz, K., Akgün, M., Özcan, M. M., Özkutlu, F., Kara, Ş. M. 2021. Interaction effects of phosphorus (P) and zinc (Zn) on dry matter, concentration and uptake of P and Zn in chia. Journal of Plant Nutrition, 44(5), 755-764. https://doi.org/10.1080/01904167.2020.1845373

Kumar A, Usmani Z, Kumar V, Anshumali, Tripti. 2017. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. Journal of Environmental Management, 90, 20-27. https://doi.org/10.1016/j.jenvman.2016.11.060

Kundan R, Pant G, Jadon N, Agrawal PK. 2015. Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers and Pesticides, 6: 155. DOI:10.4172/2471-2728.1000155

Le AT, Pek Z, Takacs S, Nemenyi A, Helyes L. 2018. The effect of plant growth-promoting rhizobacteria on yield, water use efficiency and Brix Degree of processing tomato. Plant Soil and Environment, 64: 523-529. DOI: 10.17221/818/2017-PSE

Li CY, Hu WC, Pan B, Liu Y, Yuan SF, Ding YY, Li R, Zheng XY, Shen B, Shen QR. 2017. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere, 27: 1135-1146. DOI: 10.1016/S1002-0160(17)60406-5

Marquina ME, Ramirez Y, Castro Y. 2018. Effect of rhizosphere bacteria on germination and growth of bell pepper Capsicum annuum L. var. Cacique Gigante. Bioagro, 30: 3-16.

Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK. 2015. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology, 55: 33–44. DOI:10.1002/jobm.201300562

Moncada A, Vetrano F, Miceli A. 2020. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy, 10: 1523. DOI:10.3390/ agronomy10101523

Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33:197. DOI: 10.1007/s11274-017-2364-9

Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE. 2001. Organic inputs for soil fertility management in tropical agro ecosystems: application of an organic resource database. Agriculture, Ecosystems and Environment, 83: 27–42. DOI: 10.1016/S0167-8809(00)00267-X

Parewa HP, Meena VS, Jain LK, Choudhary A. 2018. Sustainable crop production and soil health management through plant growth-promoting rhizobacteria. In: Meena VS, editor. Role of rhizospheric microbes in soil: Springer, p. 299–329. DOI:10.1007/978-981-10-8402-7_12

Pastor-Bueis R, Mulas R, Gómez X, González-Andrés F. 2017. Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: field testing on sweet pepper. Journal of Plant Nutrition and Soil Science, 180: 748-758. DOI: 10.1002/jpln.201700200

Pastor N, Masciarelli O, Fischer S, Luna V, Rovera M. 2016. Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology, 73: 346-353. DOI: 10.1007/s00284-016-1068-y

Peirce LC. 1987. Vegetables: Characteristics, Production and Marketing. Wiley, New York, USA, 433 p.

Peng D, Luo K, Jiang H, Deng Y, Bai L, Zhou X. 2017. Combined use of Bacillus subtilis strain B‐001 and bactericide for the control of tomato bacterial wilt. Pest Management Science, 73: 1253-1257. DOI: 10.1002/ps.4453

Pishchik VN, Vorobyov NI, Walsh OS, Surin VG, Khomyakov YV. 2016. Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39: 1074-1086. DOI: 10.1080/01904167.2015.1061551

Posmanik R, Gross A, Nejidat A. 2014. Effect of high ammonia loads emitted from poultry-manure digestion on nitrification activity and nitrifier-community structure in a compost biofilter. Ecological Engineering, 62: 140–147. DOI:10.1016/j.ecoleng.2013.10.033

Raymond J, Siefert JL, Staples CR, Blankenship RE. 2004. The natural history of nitrogen fixation. Molecular Biology and Evolution, 21: 541-554. DOI:10.1093/molbev/msh047

Reyes-Castillo A, Gerding M, Oyarzua P, Zagal E, Gerding J, Fischer S. 2019. Plant growth-promoting rhizobacteria able to improve NPK availability: Selection, identification and effects on tomato growth. Chilean Journal of Agrıcultural Research, 79: 473-485. DOI: 10.4067/S0718-58392019000300473

Reyes-Ramírez A, López-Arcos M, Ruíz-Sánchez E, Latournerie-Moreno L, Pérez-Gutiérrez A, Lozano-Contreras MG, Zavala-León MJ. 2014. Efectividad de inoculantes microbianos en el crecimiento y productividad de chile Habanero (Capsicum chinense Jacq.). Agrociencia, 48: 285-294.

Rubatzky VE, Yamaguchi M. 1997. World vegetables – Principles, Production and Nutritive Values. AVI Publishing, Westport, Connecticut, USA, 843 p. DOI: 10.1007/978-1-4615-6015-9

Russo VM. 2006. Biological Amendment, Fertilizer Rate, and Irrigation Frequency for Organic Bell Pepper Transplant Production. Hortscience, 41: 1402–1407. DOI:10.21273/HORTSCI.41.6.1402

Salim HA, Ali AF, Alsaady MHM, Saleh UN, Jassim NH, Hamad AR, Attia JA, Darwish JJ, Hassan AF. 2020. Effect of plant growth promoting rhizobacteria (PGPR) on growth of cauliflower (Brassica oleracea L. var. Botrytis). Plant Archives, 20: 782-786.

Samancıoğlu A, Yıldırım E, Şahin Ş. 2016. Effect of seedlings development, some physiological and biochemical properties of cabbage seedlings grown at different irrigation levels of the plant growth promoting rhizobacteria application. KSU Journal of Natural Sciences, 19: 332-338.

Sarhan TZ. 2012. Effect of biofertilizer and different levels of nitrogen (urea) on growth, yield and quality of lettuce (Lactuca sativa L.) Ramadi cv. Journal of Agricultural Science and Technology, B:2 137-141.

Sahin U, Ekinci M, Kiziloglu FM, Yildirim E, Turan M, Kotan R, Ors S. 2015. Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. HortScience, 50: 1379-1386. DOI: 10.21273/HORTSCI.50.9.1379

Sahin F, Çakmakçi R, Kantar F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil, 265: 123-129. DOI:10.1007/s11104-005-0334-8

Sharma IP, Sharma AK. 2017. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis, 71:175-183. DOI: 10.1007/s13199-016-0423-x

Sharma N, Shukla YR, Singh K, Mehta DK. 2020. Soil Fertility, Nutrient Uptake and Yield of Bell Pepper as Influenced by Conjoint Application of Organic and Inorganic Fertilizers. Communications in Soil Science and Plant Analysis, 51: 1626-1640. DOI:10.1080/00103624.2020.1791155

Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX. 2012. Effect of Plant Growth-promoting Rhizobacteria (PGPRs) on plant growth, yield and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. Journal of General and Applied Microbiology, 58: 253-262. DOI: 10.2323/jgam.58.253

Singh NP, Sachan RS Pandey PC. 1999. Effect of a decade long fertilizer and manure applicationon soil fertility and productivity of rice-wheat system in Molisols. Journal of the Indian Society of Soil Science, 47: 72–80.

Stacey G, Burris RH, Evans HJ. (eds). 1992. Biological Nitrogen Fixation, Chapman and Hall, New York, 960 p.

Swaider JM, George W, McCollum JP. 1992. Production vegetable Crops. Interstate Printers and Publishers Danville, Illinois, USA, 626p.

Thakur J, Kumar P, Mohit. 2018. Studies on conjoint application of nutrient sources and PGPR on growth, yield, quality, and economics of cauliflower (Brassica oleracea var. botrytis L.), Journal of Plant Nutrition, 41:1862-1867. DOI: 10.1080/01904167.2018.1463382

Tošić I, Golić Z, Radosavac A. 2016. Effects of the application of biofertilizers on the microflora and yield of lettuce (Lactuca sativa L.). Acta Agriculturae Serbica, 21: 91-98. DOI: 10.5937/AASer1642091T

Turan M, Ekinci M, Yildirim E, Güneş A, Karagöz K, Kotan R, Dursun A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38: 327-333. DOI: 10.3906/sag-1304-107

Turan M, Sevimli F. 2005. Influence of different nitrogen sources and levels on ion content of cabbage (Brassica oleracea var. capitata). New Zealand Journal of Crop and Horticultural Science, 33: 241 –249. DOI: 10.1080/01140671.2005.9514356

Welbaum GE. 2015. Vegetable Production and Practices. CABI International, Wallingforth, Oxfordshire, UK, 486 p.

Wang Y, Li WQ, Du BH, Li HH. 2021. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere, 31: 872–881. DOI:10.1016/S1002-0160(21)60030-9

Vasseur-Coronado M, du Boulois HD, Pertot I, Puopolo G. 2021. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research, 245. DOI: 10.1016/j.micres.2020.126672

Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571-586. DOI: 10.1023/A:1026037216893

Vetrano F, Miceli C, Angileri V, Frangipane B, Moncada A, Miceli A. 2020. Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agronomy, 10: 1477. DOI: 10.3390/agronomy10101477

Yagmur B, Gunes A. 2021. Evaluation of the effects of Plant Growth Promoting Rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by Principal Component Analysis (PCA). Gesunde Pflanzen, 73: 219-228. DOI: 10.1007/s10343-021-00543-9

Yildirim E, Turan M, Dursun A, Ekinci M, Kul R, Karagoz FP, Donmez MF, Kitir N. 2016. Integrated use of nitrogen fertilization and microbial inoculation: change in the growth and chemical composition of white cabbage. Communications in Soil Science and Plant Analysis, 47: 2245-2260. DOI: 10.1080/00103624.2016.1228955

Yildirim E, Turan M, Ekinci M, Dursun A, Gunes A, Donmez M. 2015. Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom Biotech Letters, 20: 10929-10935. DOI: 10.81043/aperta.79971

Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F. 2011. Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience, 46: 932-936. DOI: 10.21273/HORTSCI.46.6.932

Yildirim E, Karlidag H, Turan M, Donmez MF. 2010. Potential use of plant growth promoting rhizobacteria in organic broccoli (Brassica oleracea L. var. italica) production. 14th International Conference on Organic Fruit-Growing, 22-24 February 2010. Hohenheim, Germany, p. 227-235

Zaidi A, Khan MS, Saif S, Rizvi A, Ahmed B, Shahid M. 2017. Role of nitrogen-fixing plant growth- promoting rhizobacteria in sustainable production of vegetables: Current perspective. Microbial Strategies for Vegetable Production, p. 49-79. DOI: 10.1007/978-3-319-54401-4_3

Yayınlanmış

2023-06-30

Nasıl Atıf Yapılır

Kaymak, H. Çağlar, Ürüşan, A. H., Tıraşçı, S., & Kaşka, M. (2023). Role of N2-Fixing Plant Growth-Promoting Rhizobacteria in Some Selected Vegetables: N2-Fixing Plant Growth-Promoting Rhizobacteria . Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 11(6), 1183–1194. https://doi.org/10.24925/turjaf.v11i6.1183-1194.6033

Sayı

Bölüm

Derleme Makale