Molecular Characterization of Dermanyssus gallinae in Türkiye Based on 16S and 18S rDNA
DOI:
https://doi.org/10.24925/turjaf.v11i12.2411-2416.6492Anahtar Kelimeler:
Poultry red mite- genetic distance- nuclear gene- mitochondrial geneÖzet
The poultry red mite, Dermanyssus gallinae (De Geer, 1778), is widely regarded as the significant ectoparasite of egg-laying hens worldwide. Since many molecular studies on poultry red mites have focused on analyzing COI and ITS1-2 genes, the present study aimed to identify 16S rDNA and the relatively understudied nuclear 18S rDNA genes of Turkish D. gallinae populations. Twenty-eight different D. gallinae populations were collected from henhouses throughout Türkiye, and the target genes were amplified using conventional PCR after morphological analysis. Haplotype analyses of the 16S rDNA sequences revealed 14 different haplotypes, with Turkish D. gallinae grouped into two of these haplotypes. The intra-species genetic variation of the 18S rDNA and 16S rDNA sequences examined in the present study and the available sequences in public GeneBank were determined as 0.17% and 0.53%, respectively. The obtained sequences belonging to D. gallinae from Türkiye were submitted to GenBank for the first time. Given the importance of identifying genetic diversity within and between species across different geographical regions, the obtained data may contribute substantially to the genetic knowledge of the PRMs.
Referanslar
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE et al, 1987. Intraspecific phylogeography – the mitochondrial-DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst, 18: 489-522. https://doi.org/10.1146/annurev.es.18.110187.002421.
Behura SK. 2006. Molecular marker systems in insects: current trends and future avenues. Mol Ecol, 15(11): 3087-3113. https://doi.org/10.1111/j.1365-294X.2006.03014.x
Brännström S, Morrison DA, Mattsson JG Chirico J. 2008. Genetic differences in internal transcribed spacer 1 between Dermanyssus gallinae from wild birds and domestic chickens. Med Vet Entomol, 22: 152-5. https://doi.org/10.1111/j.1365-2915.2008.00722.x
Chauve C. 1998. The poultry red mite, Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol, 79: 239-245. https://doi.org/10.1016/S0304-4017(98)00167-8
Chu TTH, Murano T, Uno Y, Usui T, Yamaguchi T. 2015. Molecular epidemiological characterization of poultry red mite, Dermanyssus gallinae, in Japan. J Vet Med Sci, 77(11): 1397-403. https://doi.org/10.1292/jvms.15-0203
Ciloglu A, Yildirim A, Onder Z, Yetismis G, Duzlu O, Simsek E, Inci A. 2020. Molecular characterization of poultry red mite, Dermanyssus gallinae lineages in Türkiye and first report of Plasmodium species in the mite populations. Int J Acarology, 46(4): 241-6. https://doi.org/10.1080/01647954.2020.1758775
Dabert M. 2006, DNA markers in the phylogenetics of the Acari. Biological Lett, 43(2):97-107.
De Luna CJ, Arkle S, Harrington D, George DR, Guy JH, Sparagano OAE. 2008. The Poultry Red mite Dermanyssus gallinae as a Potential Carrier of Vector-borne Diseases. Ann N Y Acad Sci, 1149: 255-8. https://doi.org/10.1196/annals.1428.085
Di Palma A, Giangaspero A, Cafiero MA, Germinara GS. 2012. A gallery key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermayssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae). Parasit Vector, 30(5): 104-114.
Dong Z, Wang Y, Li C, Li L Men X. 2021. Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Ann Entomol Soc Am, 114(4): 470-476. https://doi.org/10.1093/aesa/saab020
Doolittle WF. 1999. Phylogenetic classification and the universal tree. Science, 284: 2124-9. https://doi.org/10.1126/science. 284.5423.2124
Dowling AP, OConnor BM. 2010 Phylogenetic relationships within the suborder Dermanyssina (Acari: Parasitiformes) and a test of dermanyssoid monophyly. Int J Acarology, 36(4): 299-312. https://doi.org/10.1080/01647951003604569
Eickbush TH, Eickbush DG. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics, 175: 477–485. https://doi.org/10.1534/ genetics.107.071399
George DR, Finn RD, Graham KM, Mul MF, Maurer V, Moro CV, Sparagano OA. 2015. Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?. Parasites and vectors, 8(1): 1-10.
Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41: 95-98.
Hebert PDN, Cywinska A, Ball SL, De Waard JR. 2003. Biological identifications through DNA barcodes. Proc Biol Sci, 270(1512): 313–321. https://doi.org/10.1098/ rspb.2002.2218
Karp-Tatham E, Küster T, Angelou A, Papadopoulos E, Nisbet AJ, Xia D, Tomley FM, Blake DP. 2020. Phylogenetic inference using cytochrome c oxidase subunit I (COI) in the poultry red mite, Dermanyssus gallinae in the United Kingdom relative to a European framework. Front Vet Sci, 7: 553. https://doi.org/10.3389/fvets.2020.00553
Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinformatics, 20(4):1160–1166. https://doi.org/10.1093/bib/bbx108
Koç N, Nalbantoğlu S. 2021. Evaluation of in-house factors affecting the population distribution of Dermanyssus gallinae in cage and backyard rearing systems by using a modified monitoring method. Exp Appl Acarol, 84(3): 529-541. https://doi.org/10.1007/s10493-021-00638-y
Koç N, İnak E, Nalbantoğlu S, Alpkent YN, Dermauw W, Van Leeuwen T. 2022. Biochemical and molecular mechanisms of acaricide resistance in Dermanyssus gallinae populations from Türkiye. Pestic Biochem Physiol, 180: 104985. https://doi.org/10.1016/j.pestbp.2021.104985
Konyalı C, Savaş T. 2021. Prevalence of Dermanyssus gallinae in Backyard Poultry Houses and Its Relation with Hen-house Conditions in Canakkale, Türkiye. ANAJAS, 36(3): 520-527. https://doi.org/10.7161/omuanajas.981203
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35 (6): 1547-1549. https://doi.org/10.1093/molbev/msy096
Navajas M, Fenton B. 2000. The application of molecular markers in the study of diversity in acarology: a review. Exp App Acarol, 24(10): 751-774. https://doi.org/ 10.1023/a:1006497906793
Naegele JA. 1963. Advances in acarology. Volume 1. Ithaca, New York: University of Chicago Press. ISBN 0-80140-311-1.
Oines O, Brännström S. 2011. Molecular investigations of cytochrome c oxidase subunit I (COI) and the internal transcribed spacer (ITS) in the poultry red mite, Dermanyssus gallinae, in northern Europe and implications for its transmission between laying poultry farms. Med Vet Entomol, 25(4): 402-412. https://doi.org/10.1111/j.1365-2915.2011.00958.x
Roy L, Dowling AP, Chauve CM, Buronfosse T. 2010. Diversity of phylogenetic information according to the locus and the taxonomic level: an example from a parasitic mesostigmatid mite genus. Int J Mol Sci, 11(4): 1704-1734. https://doi.org/10.3390/ijms11041704
Roy L, Buronfosse T. 2011. Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae. PloS, One 6(7): e22305. https://doi.org/10.1371/journal.pone.0022305
Roy L, Giangaspero A, Sleeckx N, Oines O. 2021. Who Is Dermanyssus gallinae? Genetic Structure of Populations and Critical Synthesis of the Current Knowledge. Front Vet Sci, 8: 650546. https://doi.org/10.3389/fvets.2021.650546
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol, 34:3299-302. https://doi.org/10.1093/molbev/msx248
Saraste M. 1999. Oxidative phosphorylation at the fin de siecle. Science, 283: 1488-93. https://doi.org/10.1126/science. 283.5407.1488
Sigognault Flochlay A, Thomas E, Sparagano O. 2017. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors, 10(1): 357. https://doi.org/10.1186/s13071-017-2292-4
Sleeckx N, Van Gorp S, Koopman R, Kempen I, Van Hoye K, De Baere K, Zoons J, De Herdt P. 2019. Production losses in laying hens during infestation with the poultry red mite Dermanyssus gallinae. Avian Pathol, 48(1): 17-21. https://doi.org/10.1080/03079457.2019.1641179
Sparagano O, Pavlićević A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, Van Emous R, Le Bouquin S, Hoel K, Cafiero MA. 2009 Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol, 48: 3-10. https://doi.org/10.1007/s10493-008-9233-z
Sparagano OAE, George DR, Harrington DWJ, Giangaspero, A. 2014. Significance and control of the poultry red mite, Dermanyssus gallinae. Annu Rev Entomol, 59: 447-466. https://doi.org/10.1146/annurev-ento-011613-162101
Tamura K. 1992 Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol, 9(4): 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
Woese CR. 1987 Bacterial evolution. Microbiol Rev, 51: 221-71. https://doi.org/10.1128/mr.51.2.221-271.1987
Woese CR, Fox GE. 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS, 74(11): 5088-90. https://doi.org/10.1073/pnas.74.11.5088
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.